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Let {(Xi, Yi)}
n
i=1 be a sequence of independent bivariate random vec-

tors. In this paper, we establish a refined Cramér type moderate deviation

theorem for the general self-normalized sum
∑n

i=1Xi/(
∑n

i=1 Y
2
i )1/2,

which unifies and extends the classical Cramér (1938) theorem and the self-
normalized Cramér type moderate deviation theorems by Jing, Shao and Wang
(2003) as well as the further refined version by Wang (2011). The advan-
tage of our result is evidenced through successful applications to weakly
dependent random variables and self-normalized winsorized mean. Specifi-
cally, by applying our new framework on general self-normalized sum, we
significantly improve Cramér type moderate deviation theorems for one-
dependent random variables, geometrically β-mixing random variables and
causal processes under geometrical moment contraction. As an additional
application, we also derive the Cramér type moderate deviation theorems for
self-normalized winsorized mean.

1. Introduction. Let X1,X2, · · · ,Xn be independent random variables with EXi = 0
and EX2

i <∞ for i≥ 1. Set B2
n =

∑n
i=1EX

2
i ,

Sn =

n∑

i=1

Xi, V 2
n =

n∑

i=1

X2
i , X̄ =

1

n

n∑

i=1

Xi

and σ̂2n =
1

n− 1

n∑

i=1

(Xi − X̄)2.

The self-normalized sum is defined by Sn/Vn and is closely related to the widely-used Stu-
dent’s t statistic tn = Sn/(

√
n σ̂n) in the sense that

P(tn ≥ x) = P(Sn/Vn ≥ x[n/(n+ x2 − 1)]1/2).

Therefore, to investigate the distribution of Student’s t statistic is equivalent to consider that
of the less complex self-normalized statistic.

The past three decades have witnessed the flourishing development of asymptotic
theory for self-normalized sums of independent random variables. Regarding the suffi-
cient and necessary conditions for the self-normalized central limit theorem, we refer to
Giné, Götze and Mason (1997) and Shao (2018) for independent and identically distributed
(i.i.d.) random variables and general non-i.i.d. random variables, respectively. Specifically,
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2 L. GAO, Q.-M. SHAO AND J. SHI

for the i.i.d. case, the former paper showed that Sn/Vn is asymptotically standard normal if
and only if the common distribution is in the domain of attraction of the normal law. Basically,
there are two ways to measure the accuracy in normal approximation. One method is the abso-
lute error, which concerns the celebrated Berry-Esseen bound and Edgeworth expansion. See
Bentkus and Götze (1996), Bentkus, Bloznelis and Götze (1996) and Wang and Jing (1999)
for Berry-Esseen bounds and Hall (1987) for Edgeworth expansion. Another method is the
relative error, which estimates the ratio of the tail probabilities, typically including the Cramér
type moderate deviations. Shao (1999) established the following self-normalized Cramér type
moderate deviation result for i.i.d. random variables. If E|X1|3 <∞, then

P(Sn >xVn)

1−Φ(x)
−→ 1

holds uniformly for 0 ≤ x≤ o(n1/6), where Φ(x) is the standard normal distribution func-
tion. Jing, Shao and Wang (2003) further extended the result to general independent random
variables. In particular, they obtained that if E|Xi|3 <∞ for i≥ 1, then there exists an abso-
lute constant A> 0, such that

(1.1)

∣∣∣∣
P(Sn > xVn)

1−Φ(x)
− 1

∣∣∣∣≤A(1 + x)3
n∑

i=1

E|Xi|3/B3
n

holds uniformly for 0≤ x≤Bn(
∑n

i=1E|Xi|3)−1/3.
In addition, Wang (2011) corrected the skewness in normal approximation and proved that

if E|Xi|3 <∞ for i≥ 1, then there exist positive constants A0 and C0 such that

P
(
Sn >xVn + cBn

)

[1−Φ(x+ c)]Ψx
(1.2)

= eO1∆n,x

[
1 +O2

(
(1 + x)

n∑

i=1

E|Xi|3/B3
n

)]
,

holds uniformly for |c| ≤ x/5 and for all 0 < x ≤ 1
3Bn(maxiE|Xi|3)−1/3 and x ≤

C0B
3
n/
∑n

i=1E|Xi|3, where |O1| ≤A0, |O2| ≤A0 and

Ψx = exp

[
γ2
(4γ

3
− 2
)
x3

n∑

i=1

EX3
i /B

3
n

]
,

∆n,x = (1+ x)3B−3
n

n∑

i=1

E
[
|Xi|31((1 + x)|Xi| ≥Bn)

]

+ (1+ x)4B−4
n

n∑

i=1

E
[
|Xi|41((1 + x)|Xi| ≤Bn)

]
,

with γ = 1
2(1 + c/x). Especially, if X1, . . . ,Xn are i.i.d. random variables with EX4

1 <∞,
then (1.2) implies there exist positive constantsA0 and C0 depending on EX2

1 and EX4
1 such

that

P(Sn > xVn)

1−Φ(x)
= exp

{
− x3E[X3

1 ]

3
√
n(E[X2

1 ])
3/2

}[
1 +O1

(
1 + x√
n

+
(1 + x)4

n

)]
,

uniformly in 0< x≤ C0n
1/4, where |O1| ≤A0. Observe that in the i.i.d. case, the classical

self-normalized Cramér type moderate deviation presented in (1.1) gives a convergence rate
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of (1 + x)3/
√
n and the corresponding range of convergence x = o(n1/6). Thus, by speci-

fying the skewness correction term Ψx, (1.2) can improve the result of Jing, Shao and Wang
(2003) in terms of both the convergence rate and the range of convergence when the higher
fourth moments exist.

It is worth mentioning that the moment conditions for self-normalized Cramér type moder-
ate deviation theorems are much weaker than those in the classical theorems for standardized
sums. As a result, to account for robustness against heavy-tailed data, the self-normalized
sum would be recommended in real-world applications. We refer to de la Peña, Lai and Shao
(2009) for a systematic introduction to the theory and statistical applications of self-
normalized statistics.

Due to its rigorous control on the ratio of tail probabilities, the self-normalized Cramér
type moderate deviation has been successfully applied in high-dimensional statistical anal-
ysis, including large-scale multiple testing (Fan, Hall and Yao, 2007; Liu and Shao, 2010,
2013), signal detection (Delaigle and Hall, 2009), classification (Fan and Fan, 2008) and fea-
ture screening (Chang, Tang and Wu, 2016) among others.

Most of the existing works have focused on the classical self-normalized sum, that is,∑n
i=1Xi/(

∑n
i=1X

2
i )

1/2 for independent random variables {Xi}ni=1. Yet, in some scenarios,
the sequence used for normalizing in the denominator could be different from the numera-
tor, which occurs for a variety of commonly used studentized nonlinear statistics such as the
studentized U-statistic and the studentized L-statistics. Therefore, investigations into general
self-normalized processes beyond the classical form are imperative. Shao and Zhou (2016)
attempted to extend the Cramér type moderate deviation theorem to a more general setting,
that is, (

∑n
i=1Xi +D1n)/((

∑n
i=1X

2
i )(1 +D2n))

1/2, where the remainders D1n and D2n

are measurable functions of {Xi}ni=1 but negligible. Our present work will establish a funda-
mental framework in Theorem 2.1 on the Cramér type moderate deviation for a more general
self-normalized form of

∑n
i=1Xi/(

∑n
i=1 Y

2
i )

1/2, where {(Xi, Yi)}ni=1 is a sequence of in-
dependent bivariate random vectors and Xi and Yi could be different from each other. It is
worthwhile to mention that our Theorem 2.1 can cover not only the classical Cramér type
moderate deviation for standardized sums by Cramér (1938), but also the self-normalized
counterparts by Jing, Shao and Wang (2003) and Wang (2011).

Our investigation into the general self-normalized sum is also motivated by seeking to
develop sharper self-normalized Cramér type moderate deviation results for weakly depen-
dent random variables. Though Cramér type moderate deviation theory has been well studied
for independent random variables, the theory for dependent data remains largely underde-
veloped. The biggest challenge is that the classical theory for independent random variables
cannot be directly applied due to dependence. Chen et al. (2016) made the first attempt to
develop the theory for self-normalized sums of dependent random variables with geometri-
cally decaying dependence. However, their result can be further improved by applying our
framework on the general self-normalized sum. The key observation is that after dividing
the weakly dependent random variables into consecutive big blocks and small blocks, its
self-normalized sum can be approximated by a general self-normalized sum of independent
bivariate random vectors. Therefore, Cramér type moderate deviation theorems for the self-
normalized sums of weakly dependent random variables can be established based on our
fundamental theory on the general self-normalized sum. More details will be presented in
Section 3.

The rest of the paper is organized as follows. Our framework on general self-normalized
Cramér type moderate deviation is presented in Section 2. Section 3 shows applications to
the self-normalized sums of weakly dependent random variables under one-dependence, ge-
ometrically β-mixing condition, and geometric moment contraction. Section 4 presents an
additional application to studentized winsorized mean that naturally takes the form of a gen-
eral self-normalized sum. Section 5 is devoted to proofs of the theorems in Sections 2–4.
Other technical proof details are included in the Supplementary Material.
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2. Main Results. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent bivariate random
vectors satisfying

(2.1) EXi = 0 for i≥ 1 and

n∑

i=1

EX2
i = 1 =

n∑

i=1

EYi
2.

We remark that for the convenience of presentation, {Xi} and {Yi} are standardized so∑n
i=1EX

2
i = 1 =

∑n
i=1EYi

2. In other words, one should think of Xi as Xn,i and similarly
Yi as Yn,i. Let

(2.2) Sn =

n∑

i=1

Xi, V 2
n =

n∑

i=1

Y 2
i and Tn =

Sn
Vn
.

We first propose an exponential moment condition as follows. Suppose there exists some
constant c0 ≥ 0 such that for x > 0 satisfying (2.7),

(2.3) Ee
min

{
X2

i
Y 2
i

+c0EY
2
i
,2xXi

}

<∞.

The above moment condition links Xi with Yi and shows how they interact with each
other. In particular, it is automatically satisfied for the classical self-normalized sum with
Yi =Xi.

The following notations will be used throughout the paper. Define

L3,n =

n∑

i=1

(
E|Xi|3 + E|Yi|3

)
,(2.4)

δx,i = (1 + x)3
(
E
[
|Xi|31(|(1 + x)Xi|> 1)

]
+E

[
|Yi|31(|(1 + x)Yi|> 1)

])

+ (1 + x)4
(
E
[
|Xi|41(|(1 + x)Xi| ≤ 1)

]
+ E

[
|Yi|41(|(1 + x)Yi| ≤ 1)

])
,

rx,i = E

[
exp

{
min

( X2
i

Y 2
i + c0EY 2

i

,2xXi

)}
1(|(1 + x)Xi|> 1)

]
,

Rx,i = δx,i + rx,i, δx =

n∑

i=1

δx,i, rx =

n∑

i=1

rx,i, and Rx = δx + rx.

THEOREM 2.1. Assume (2.1) and (2.3) are satisfied. In addition, E|Xi|3 < ∞ and

E|Yi|3 <∞ for i≥ 1. Then there exist absolute positive constants 0 < c1 ≤ 1/4 and A> 0
such that

(2.5) P(Sn ≥ xVn + c) = [1−Φ(x+ c)]Ψ∗
x e

O1Rx(1 +O2(1 + x)L3,n),

where

Ψ∗
x = exp

{
x3
(4
3
γ3

n∑

i=1

EX3
i − 2γ2

n∑

i=1

E[XiY
2
i ]
)}

and γ =
1

2
(1 +

c

x
),

uniformly for |c| ≤ x/5 and for all x > 0 satisfying

(1 + x)L3,n ≤ c1, x−2Rx ≤ c1,(2.6)

and x≤
1
4 ∧ 1

2
√
c0[

maxi(E|Xi|3 +E|Yi|3)
]1/3 , max

i
rx,i ≤ c1,(2.7)

where |O1| ≤A and |O2| ≤A.
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Theorem 2.1 unifies the classical standard and self-normalized Cramér type moderate de-
viation theorems as well as the refined version by Wang (2011). The assumption (2.3) is
satisfied for a wide class of statistics, including the block sums of weakly dependent ran-
dom variables and the self-normalized winsorized mean. More details will be provided in the
proof of Theorems 3.1–3.3 and 4.1.

The following corollary is a straightforward application of Theorem 2.1 to the classical
standardized sum of independent random variables. The proof will be given in Section A.18
in the Supplementary Material.

COROLLARY 2.1. LetX1, . . . ,Xn be i.i.d. random variables with EXi = 0 and E[X2
i ] =

σ2. Denote Sn =
∑n

i=1Xi. If there exists a positive constant t0 such that EetX1 <∞ for

|t| ≤ t0, then we have

P(Sn > xσ
√
n)

1−Φ(x)
= exp

{x3EX3
1

6σ3
√
n

}[
1 +O

((1 + x)4

n
+

1+ x√
n

)]
(2.8)

holds uniformly for 0<x≤O(n1/4).

3. Applications to Weakly Dependent Random Variables. The Cramér type moder-
ate deviation theory has been well studied for independent random variables, yet there are
few results available for dependent data. The novel work of Chen et al. (2016) made the first
attempt to develop the theory for self-normalized sums of weakly dependent random vari-
ables satisfying the geometrically β-mixing condition or geometric moment contraction. In
this section, we will further improve their results by applying our fundamental framework
on the general self-normalized sum. Before that, we will start with a Cramér type moderate
deviation theorem for self-normalized sums of one-dependent random variables. The reason
to first investigate under one-dependence is two-fold. First, one-dependence is the simplest
scenario of dependency and the result for one-dependent random variables can be applied to
m-dependence, where m could also go to infinity. Second, many weakly dependent random
variables can be approximated by some one-dependent random variables. A typical example
includes the block sums of random variables satisfying geometric moment contraction, which
will be presented in Section 3.3. Therefore, the following Theorem 3.1 under one-dependence
lays the foundation for Theorem 3.3 under geometric moment contraction.

3.1. Cramér type moderate deviation under one-dependence. Let ξ1, ξ2, . . . be one-
dependent random variables, which means for i, j ≥ 1, ξi is independent of ξj if |j − i| ≥ 2.
Put

(3.1) Sn =

n∑

i=1

ξi, V 2
n =

n∑

i=1

ξ2i , ρn =

∑n−1
i=1 Eξiξi+1∑n

i=1Eξ
2
i

.

Note that |ρn| ≤ 1/2. Moreover, in many applications where weakly dependent sequence
can be approximated by some one-dependent random variables, the covariances Eξiξi+1 are
negligible compared to the variables Eξ2i due to weak dependence, hence ρn → 0 as n→
∞. Therefore, ρn can be moved to the remainders and the limiting distribution will still
be standard normal. One can find more details in the proof of Theorem 3.3, which obtains
Cramér type moderate deviation result under geometric moment contraction by applying
Theorem 3.1.

Under existence of the fourth moment, we have the following theorem for self-normalized
sums of one-dependent random variables.
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THEOREM 3.1. Assume that Eξi = 0, Eξ4i ≤ a41 and Eξ2i ≥ a22 for 1 ≤ i ≤ n and ρn ≥
ρ for some ρ > −1/2. Denote a = a1/a2. Then there exist positive numbers a0 and A(ρ)
depending on ρ such that

(3.2) P(Sn > xVn) =
[
1−Φ

( x√
1 + 2ρn

)](
1 +O1a

4 (1 + x)2

n1/4

)

holds uniformly for x ∈ (0, a0a
−2n

1

8 ), where |O1| ≤A(ρ).

The proof of Theorem 3.1 relies on the big-block-small-block technique and an application
of Theorem 2.1. The main idea is to approximate the self-normalized sum of one-dependent
random variables by a general self-normalized sum of independent random vectors based on
the big blocks. In more details, let the length of big blocks be l = [nα] for 0< α< 1, where
[x] denotes the integer part of x for any x > 0, and the length of small blocks be only 1.
Denote k = [n/(l+1)]. For 1≤ j ≤ k, we define the j-th big block by

(3.3) Hj = {i : (j − 1)(l+ 1) + 1≤ i≤ j(l+ 1)− 1}
and the sums over j-th big block by

(3.4) Xj =
∑

i∈Hj

ξi and Y 2
j =

∑

i∈Hj

ξ2i .

Observe that by this construction, the big-block sums {Xj}kj=1 and {Yj}kj=1 are both se-
quences of independent random variables, because {ξi}ni=1 are one-dependent and the ad-
jacent big blocks Hj and Hj+1 are separated by a random variable ξj(l+1). Since the
big blocks contain (1 − n−α) proportion of the random variables in {ξi}ni=1, we can ap-
proximate the self-normalized sum Sn/Vn of {ξi}ni=1 by the general self-normalized sum∑k

j=1Xj/(
∑k

j=1Y
2
j )

1/2. The crucial quantity rx,j can be separated into two self-normalized
sums of independent random variables due to one-dependence and thus can be bounded by
using Lemma A.5 in the Supplementary Material. Therefore, Theorem 3.1 can be proved by
applying Theorem 2.1 and calculating the error terms involved. More details of the proof will
be provided in Section 5.2.

Compared with the classical result (1.1) for independent data, one-dependence results in a
narrower zone of convergence and a slower convergence rate. Moreover, (3.2) can be easily
extended to general m-dependent random variables, where m could depend on n and go
to infinity. Indeed, if Z1, . . . ,Zn are m-dependent and suppose b = n/m is an integer for
simplicity, we define ξj =

∑jm
i=1+(j−1)mZi for 1≤ j ≤ b, then ξ1, . . . , ξb are one-dependent

random variables and Theorem 3.1 can be applied.

3.2. Cramér type moderate deviation under β-mixing. In time series, asymptotic inde-
pendence conditions such as mixing conditions are usually proposed to replace independence,
among which β-mixing is an important dependent structure and has been connected with a
large class of time series models including ARMA models, GARCH models and certain
Markov processes. This subsection provides a Cramér type moderate deviation theorem for
block-normalized sums of geometrically β-mixing random variables, which improves the
result by Chen et al. (2016).

Let {Xi}ni=1 be a sequence of random variables. Let σt−∞ and σ∞t+m be σ-fields generated
by {Xi}1≤i≤t and {Xi}i≥t+m, respectively. The β-mixing coefficient is given by

β(m) := sup
t

E sup{|P(B|σt−∞)− P(B)| :B ∈ σ∞t+m}.(3.5)
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We say {Xi}i≥1 is geometrically β-mixing if β(m) admits an exponentially decaying rate,
that is, there exist positive numbers a1, a2 and τ such that

(3.6) β(m)≤ a1e
−a2mτ

.

To account for dependence, the block technique is naturally used to estimate the variance
of sums of dependent random variables (see Chen et al. (2016)). Set l= [nα]+ 1 for 0< α<
1 and k = [n/l] . For 1≤ j ≤ k, define the j-th block and corresponding j-th block sum by

Hj = {i : l(j − 1) + 1≤ i≤ lj} and Yj =
∑

i∈Hj

Xi,(3.7)

respectively. The block-normalized sum is then defined by

(3.8) Tk =

∑k
j=1Yj√∑k
j=1 Y

2
j

.

THEOREM 3.2. Let {Xi}ni=1 be a β-mixing sequence satisfying (3.6). Assume EXi =
0 and there exist positive numbers µ1 and µ2 such that E|Xi|r ≤ µr1 for r > 4 and

E(
∑s+t

i=sXi)
2 ≥ µ22t for all i ≥ 1, s ≥ 0, t ≥ 1. Then, for 0 < α < 1 and τ > 0, there exist

positive numbers A and d0 depending on a1, a2, µ1, µ2, α, τ and r such that,

(3.9)
∣∣∣P(Tk ≥ x)

1−Φ(x)
− 1
∣∣∣≤A

((1 + x)2

nα
+

(1 + x)2 logn

nmin{(1−α)/4, ατ/2}

)

uniformly in 0≤ x≤ d0min{nα/2, (logn)−1/2nmin{(1−α)/8, ατ/4}}.

As for the choice of α, for any given τ , we can always choose α such that 1− α≤ 2ατ ,
that is, α≥ 1

1+2τ . To optimize the convergence rate and the range of x in (3.9),
(i) when τ ≥ 2, let α= 1

5 , then

(3.10)
P(Tk ≥ x)

1−Φ(x)
= 1+O

((1 + x)2 logn

n1/5

)

uniformly for x ∈ (0, d1(logn)
−1/2n1/10);

(ii) when τ < 2, let α= 1
1+2τ , then

(3.11)
P(Tk ≥ x)

1−Φ(x)
= 1+O

((1 + x)2 logn

n
τ

2(1+2τ)

)

uniformly for x ∈ (0, d1(logn)
−1/2n

τ

4(1+2τ) ).

REMARK 3.1. We now compare our result with Theorem 4.2 in Chen et al. (2016). They

proved that given E|Xi|r <∞ for r > 3 and the same assumption (3.6),
∣∣∣P(Tk ≥ x)

1−Φ(x)
− 1
∣∣∣≤A

[(1 + x)2

nα
+

(1 + x)5/4

n(1−α)/8

]
(3.12)

uniformly in 0≤ x≤ d0(min{(logn)−4/5n(1−α)/10, nατ/2, nα/2}). (We have to mention that

the original version of Theorem 4.2 in Chen et al. (2016) missed the error term
(1+x)2

nα and

the corresponding condition x≤ d0n
α/2.) When (1− α)> 2ατ , our results might be worse

for some choices of α. However, when (1− α)≤ 2ατ , our results improve theirs in terms of

both the convergence rate and the corresponding range of x. The improvement is achieved by

applying our framework for general self-normalized sum and correcting the bias to normal

approximation by specifying the skewness term Ψ∗
x.
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The proof of Theorem 3.2 again builds on the big-block-small-block technique. Recall that
for 1≤ j ≤ k, Yj =

∑
i∈Hj

Xi is a block sum defined in (3.7). We first apply big-block-small-

block technique to separate the sequence {Yj}kj=1 into consecutive big blocks and small
blocks. Let the size of big-blocks be m1 = [nα1 ] for 0 < α1 < 1− α and the size of small-
blocks be only 1. Denote k1 = [k/(m1 +1)]. For 1≤ u≤ k1, define the u-th big block by

Iu = {j : (m1 +1)(u− 1) + 1≤ j ≤ (m1 +1)u− 1},(3.13)

and the sums over u-th big block by

ζu =
∑

j∈Iu
Yj, η2u =

∑

j∈Iu
Y 2
j .(3.14)

Then the self-normalized sum Tk =
∑k

j=1Yj/(
∑k

j=1Y
2
j )

1/2 can be approximated by the

general self-normalized sum
∑k1

u=1 ζu/(
∑k1

u=1 η
2
u)

1/2 constructed on the big blocks. How-
ever, unlike the big-block sums under one-dependence, the big-block sums {(ζu, ηu)}k1

u=1
are not independent under β-mixing assumption in (3.6), but weakly dependent. Therefore,
Theorem 2.1 can not be directly applied. Note that the adjacent random vectors (ζu, ηu) and

(ζu+1, ηu+1) depend on {Yj}(m1+1)u−1
j=(m1+1)(u−1)+1 and {Yj}(m1+1)(u+1)−1

(m1+1)u+1 , respectively. Since Yj
defined in (3.7) is a block sum of {Xi} and by the β-mixing assumption on {Xi}, we can
see the β-mixing dependence coefficient between (ζu, ηu) and (ζu+1, ηu+1) is bounded by
O(e−a2nατ

), which converges to 0 as n→∞. According to Lemma 5.3 (Berbee, 1987) pre-
sented in Section 5.3, the weakly dependent random vectors {(ζu, ηu)}k1

u=1 can be replaced
with independent random vectors {(ζ̃u, η̃u)}k1

u=1 that have the same marginal distributions,
with probability 1−O(k1e

−a2nατ

). Moreover, the crucial quantity rx,u can be approximated
by two self-normalized sums of independent random variables due to the β-mixing assump-
tion (see Lemma 5.3) and the block technique. Consequently, our main result in Theorem 2.1
can be applied to the general self-normalized sum

∑k1

u=1 ζ̃u/(
∑k1

u=1 η̃
2
u)

1/2. Detailed proof
will be given in Section 5.3.

3.3. Cramér type moderate deviation for causal processes under geometric moment con-

traction (GMC). The GMC (see Wu and Shao (2004), Hsing and Wu (2004) and Wu (2005,
2011)) is satisfied by many non-linear time series models including various GARCH models
that are commonly used in statistics, econometrics and engineering. In this subsection, we
present a Cramér type moderate deviation theorem for block normalized sums of random
variables satisfying GMC.

Let {εt}t∈Z be i.i.d. random variables and define σ-fields Ft = σ(. . . , εt−1, εt). Suppose
that {Xi =Gi(Fi)}i≥1 is a causal process with Gi(·) being a measurable function such that
Xi is well-defined. Let {ε∗t }t∈Z be an independent copy of {εt}t∈Z and we similarly define
F ∗

t = σ(. . . , ε∗t−1, ε
∗
t ).

DEFINITION 3.1. (GMC). Assume that E|Xi|r <∞ for all i≥ 1 with r > 2. Define the

functional dependence measure by

(3.15) ∆r(n) = sup
i

‖Xi −Gi(F
∗
i−n, εi−n+1, . . . , εi)‖r,

where ‖ · ‖r = (E| · |r)1/r . We say {Xi}i≥1 satisfies GMC if there exist positive constants a1,

a2 and 0< τ ≤ 1 such that

(3.16) ∆r(n)≤ a1e
−a2nτ

.
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Note that the GMC property (3.16) implies {Xi}i≥1 forgets the past F0 = σ(. . . , ε−1, ε0)
geometrically fast.

REMARK 3.2. Define another functional dependence measure as

(3.17) θr(n) = sup
i

‖Xi −Gi(. . . , εi−n−2, εi−n−1, ε
∗
i−n, εi−n+1, . . . , εi)‖r.

The property (3.16) is equivalent to θr(n)≤ a′1e
−a′

2n
τ

for some positive constants a′1 and a′2.

Now we assume {Xi}ni=1 is a sequence of random variables with

(3.18) EXi = 0 , E|Xi|4 <∞ ,

for all i≥ 1. Write Sk,m =
∑k+m

i=k+1Xi. Assume there exists a positive number ω1 such that
for any k ≥ 0,m≥ 1,

(3.19) E(S2
k,m)≥ ω2

1m.

As with the procedure for β-mixing random variables, we construct the block-normalized
sum for random variables satisfying GMC. Let the block size m = [nα] for 0 < α < 1 and
k = [n/m]. For 1≤ j ≤ k, define the j-th block and the j-th block sum by

Hj = {i :m(j − 1) + 1≤ i≤mj} and Yj =
∑

i∈Hj

Xi.

The block-normalized sum is then given by

(3.20) Tk =

∑k
j=1Yj√∑k
j=1 Y

2
j

.

THEOREM 3.3. Assume {Xi}ni=1 is a causal process satisfying (3.16), (3.18) and (3.19).
Then we have for 0< α< 1 and τ > 0, there exist positive numbers A and d0 depending on

a1, a2, ω1, α and τ such that

P(Tk ≥ x) = [1−Φ(x)]
(
1 +O1(

1 + x2

nα
+

1+ x2

n(1−α)/4
)
)

(3.21)

uniformly in 0≤ x≤ d0min{nατ/2, nα/2, n(1−α)/8}, where |O1| ≤A.

Corollary 4.3 in Chen et al. (2016) stated that (3.12) also holds for the self-normalized
block sum of GMC random variables. Compared with their result, our convergence rate and
the associated converging range of x significantly improve theirs.

The main idea of our proof for Theorem 3.3 is to approximate {Yj}kj=1 by one-dependent
random variables and then apply Theorem 3.1. Define

(3.22) Ỹj = E(Yj |εl,m(j − 2) + 1≤ l≤mj)

and

(3.23) T̃k =

∑k
j=1 Ỹj

(
∑k

j=1 Ỹ
2
j )

1/2
,

where m = [nα]. Since Yj =
∑

i∈Hj
Xi belongs to Fmj and depends weakly on Fm(j−2)

by the GMC assumption (3.16), it is intuitive that Ỹj is close to Yj . In particular, we can
prove ‖Ỹj − Yj‖r ≤ a1me

−a2mτ . Therefore, the self-normalized sum Tk of {Yj}kj=1 can be



10 L. GAO, Q.-M. SHAO AND J. SHI

well approximated by the self-normalized sum T̃k of {Ỹj}kj=1. Moreover, since {εt}t∈Z are

i.i.d. random variables, it is easy to see {Ỹj}kj=1 are one-dependent. Consequently, Theorem
3.3 can be proved by applying Theorem 3.1 and controlling the errors caused by the approx-
imation by one-dependent random variables. We will present the detailed proof in Section
5.4.

4. Applications to self-normalized winsorized mean. Although the sample mean has
always been a prominent unbiased estimator for a location parameter, it has the troubling
disadvantage of being heavily influenced by gross outliers. Yet, robustness is often a desir-
able property, especially in real-world applications. Thus robust alternatives, typically includ-
ing the trimmed mean (Rothenberg, Fisher and Tilanus (1964)), the winsorized mean (Dixon
(1960), Huber (1964)), and the Huber estimator (Huber (1964, 1973)), are imperative to make
more reliable statistical inference for unknown parameters. Suppose we have i.i.d. observa-
tions Y1, Y2, . . . , Yn with common distribution Y and

µ= E[Y ] and σ2 =Var(Y ).

For a thresholding parameter τ > 0 that determines the tradeoff between bias and robustness,
the winsorized mean is defined by

(4.1) µ̂W = n−1
n∑

i=1

f(Yi),

where

(4.2) f(x) = x1(|x| ≤ τ) + τ1(x > τ)− τ1(x <−τ).
The trimmed mean is defined by

(4.3) µ̂T = c−1
τ,n

n∑

i=1

Yi1{|Yi| ≤ τ},

where cτ,n =
∑n

i=1 1{|Yi| ≤ τ}. Moreover, the Huber loss (Huber (1964)) is given by

(4.4) ℓτ (u) =





1

2
u2 if |u| ≤ τ,

τ |u| − 1

2
τ2 if |u|> τ,

which is a compromise between square loss and absolute loss. The Huber estimator is then
defined as

(4.5) µ̂H = argmin
µ∈R

n∑

i=1

ℓτ (Yi − µ).

These robust estimators are common in reducing the impact of outliers and are all asymp-
totically equivalent to the sample mean when the associated tuning parameter τ tends to
infinity. Compared with the Huber estimator, the trimmed mean and the winsorized mean
have explicit formulas and therefore are easier to be applied in real-world applications. It
is well-known that these robust estimators are asymptotically normal under some regularity
conditions. Recently Zhou et al. (2018) obtained a Cramér-type moderate deviation theorem
for the Huber estimator when allowing the tuning parameter τ to diverge with the sample size
n in some regime, and they applied the result to establish theoretical guarantees for the false
discovery rate in multiple testing procedure for population means. However, the statistic they
investigated depends on the unknown variance, which needs to be well estimated in practice.
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4.1. Cramér-type moderate deviation for self-normalized winsorized mean and trimmed

mean. In this section, we will provide Cramér-type moderate deviation theorems for the
self-normalized winsorized mean defined in (4.6) and self-normalized trimmed mean defined
in (4.9), as an application of our main Theorem 2.1. The self-normalized winsorized mean
and trimmed mean are asymptotically pivotal statistics in the sense that their asymptotic
distributions do not depend on unknown parameters as (n, τ)→ (∞,∞), therefore they can
be directly used in the multiple testing of population means with theoretical justification.
In addition, we will see our results for self-normalized winsorized mean and trimmed mean
outperform that for the Huber estimator established in Zhou et al. (2018).

Since the winsorized mean and trimmed mean have explicit expressions as presented in
(4.1) and (4.3), we can easily construct the studentized counterparts by plugging in the sample
variance. The studentized winsorized mean is given by

(4.6) Sτ,n =

∑n
i=1(f(Yi)− µ)√∑n
i=1(f(Yi)− µ̂W )2

and the studentized trimmed mean is given by

(4.7) Uτ,n =

∑
i∈N (Yi1{|Yi| ≤ τ} − µ)√∑
i∈N (Yi1{|Yi| ≤ τ} − µ̂T )2

,

where N = {1≤ i≤ n : |Yi| ≤ τ}. Observe that

Sτ,n =

∑n
i=1(f(Yi)− µ)√∑n

i=1(f(Yi)− µ+ µ− µ̂W )2

=

∑n
i=1(f(Yi)− µ)√∑n

i=1(f(Yi)− µ)2 − 1
n

(∑n
i=1(f(Yi)− µ)

)2 =
S∗
τ,n√

1− 1
n(S

∗
τ,n)

2
,

where S∗
τ,n is the self-normalized winsorized mean defined as

(4.8) S∗
τ,n =

∑n
i=1(f(Yi)− µ)√∑n
i=1(f(Yi)− µ)2

.

Similarly, we have for the studentized trimmed mean that

Uτ,n =
U∗
τ,n√

1− 1
cτ,n

(U∗
τ,n)

2
,

where U∗
τ,n is the self-normalized trimmed mean defined as

(4.9) U∗
τ,n =

∑
i∈N (Yi1{|Yi| ≤ τ} − µ)√∑
i∈N (Yi1{|Yi| ≤ τ} − µ)2

and cτ,n =
∑n

i=1 1{|Yi| ≤ τ}. Since the function x/(1 − 1
nx

2)1/2 is an increasing function
for 0< x< n1/2, we have

P(Sτ,n >x) = P

(
S∗
τ,n >

x√
1 + x2

n

)

and

P(Uτ,n >x) = P

(
U∗
τ,n >

x√
1 + x2

cτ,n

)
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Therefore, to investigate the limiting properties of Sτ,n and Uτ,n is equivalent to investigate
that for the simpler self-normalized statistics S∗

τ,n and U∗
τ,n, respectively.

Before stating our Cramér type moderate deviation results, let us first present how the self-
normalized winsorized mean and trimmed mean connect with the general self-normalized
sum investigated in our main Theorem 2.1. First for the self-normalized winsorized mean,
though (4.8) presents the form of a self-normalized sum of independent random variables
for S∗

τ,n, the expectation of f(Y )− µ is slightly deviated from 0 and needs to be calibrated.
Denote

µ̃= Ef(Y ), σ21 = E(f(Y )− µ̃)2, σ22 = E(f(Y )− µ)2.

Then we can write

S∗
τ,n =

∑
n
i=1(f(Yi)−µ̃)√

nσ1
−

√
n(µ−µ̃)
σ1√∑n

i=1(f(Yi)−µ)2

nσ2
2

· σ1
σ2

=
Sn − c

Vn
· σ1
σ2
,(4.10)

where Sn, Vn and c are denoted by

Sn =

n∑

i=1

f(Yi)− µ̃√
nσ1

, V 2
n =

n∑

i=1

(f(Yi)− µ)2

nσ22

and c=

√
n(µ− µ̃)

σ1
.

Therefore,

P(S∗
τ,n >x) = P

(Sn − c

Vn
>
σ2
σ1
x
)
.

Note that the random variables involved in Sn and Vn are different, which means the existing
results for classical self-normalized sums cannot be directly applied.

As for the self-normalized trimmed mean, note that in the numerator,
∑

i∈N (Yi1{|Yi| ≤
τ} − µ) in (4.9) is equal to

∑n
i=1(Yi − µ)1{|Yi| ≤ τ}. Similarly in the denominator,∑

i∈N (Yi1{|Yi| ≤ τ} − µ)2 is equal to
∑n

i=1[(Yi − µ)1{|Yi| ≤ τ}]2. Thus we have

U∗
τ,n =

∑n
i=1(Yi − µ)1{|Yi| ≤ τ}√∑n
i=1[(Yi − µ)1{|Yi| ≤ τ}]2

Denote

µ0 = E[(Y − µ)1{|Yi| ≤ τ}], σ23 = E[(Y − µ)1{|Yi| ≤ τ} − µ0]
2,

and σ24 = E[(Y − µ)21{|Yi| ≤ τ}].
Similar to the self-normalized winsorized mean, we can obtain

P(U∗
τ,n >x) = P

(S◦
n − δ

V ◦
n

>
σ4
σ3
x
)
,

where

S◦
n =

n∑

i=1

(Yi − µ)1{|Yi| ≤ τ} − µ0√
nσ3

, (V ◦
n )

2 =

n∑

i=1

[(Yi − µ)1{|Yi| ≤ τ}]2
nσ24

and δ =

√
nµ0
σ3

.
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Consequently, our result for general self-normalized sums in Theorem 2.1 can be directly
applied to S∗

τ,n and U∗
τ,n to derive the following bias-corrected Cramér-type moderate devi-

ation theorems for the self-normalized winsorized mean and trimmed mean under the fourth
moment.

THEOREM 4.1. Assume E[Y 4] <∞. Then there exist an absolute positive constant c1
and positive constants c2 and A depending on σ, E[|Y |3] and E[Y 4], such that for

(4.11) τ ≥ c1n
1/6max{(E[Y 4])1/2/σ, (E[Y 4]/σ)1/3},

it holds that

P(S∗
τ,n > x) = [1−Φ(x)] exp

{
− x3E(Y − µ)3

3
√
nσ3

}

×
[
1 +O1

((1 + x4)

n
+

(1 + x)
√
n

τ3
+

(1+ x)√
n

)]
(4.12)

uniformly for x ∈ (0, c2min{n1/4, τ3n−1/2}), where O1 is a bounded quantity satisfying

|O1| ≤A. Similar result holds for P(S∗
τ,n <−x).

THEOREM 4.2. Under the conditions of Theorem 4.1, the same result as (4.12) holds for

U∗
τ,n.

Observe that under the fourth moment, the general framework Theorem 2.1 enables us to
pin down the bias-corrected term exp{−x3

E(Y−µ)3

3
√
nσ3 } which depends on the skewness of the

underlying distribution. After correcting this skewness in normal approximation, the conver-
gence rate and the converging range significantly improve that given in Theorem 4.3, where
only third moment is assumed.

The choice of τ should be determined by taking both convergence rate and robust-
ness of estimator into account. We observe from (4.12) that the ratio P(S∗

τ,n > x)/[(1 −
Φ(x)) exp{−x3

E(Y−µ)3

3
√
nσ3 }] converges to 1 for x ∈ (0, o(min{n1/4, τ3n−1/2})). The widest

possible range x ∈ (0, o(n1/4)) can be achieved by choosing τ ≥ O(n1/4). When τ ≤
O(n1/3), the larger τ is, the faster rate of convergence and wider range of x can be ob-
tained. Yet, once τ exceeds O(n1/3), our result reduces to the bias-corrected Cramér-type
moderate deviation for the classical self-normalized sample mean (see Theorem 1.1 in
Wang (2011)), which is reasonable because the winsorized mean and trimmed mean are
asymptotically equivalent to the sample mean as τ →∞. It is worth mentioning that when
O(n1/6)≤ τ ≤O(n1/3), the ratio P(S∗

τ,n >x)/
(
[1−Φ(x)] exp{−x3

E(Y−µ)3

3
√
nσ3 }

)
converges to

1 at the rate of O((1+x)4n−1+(1+x)
√
nτ−3) uniformly for x ∈ o(min{n1/4, τ3n−1/2}).

In this regime of τ , though the convergence rate of winsorized mean and trimmed mean could
be slightly slower than that of the classical self-normalized sample mean and the ranges of
x for convergence could be narrower, the winsorized mean and trimmed mean provide ro-
buster inference. We will provide the proof of Theorem 4.1 in Section A.11 and the proof of
Theorem 4.2 in Section A.12.

Theorem 2.3 in Zhou et al. (2018) is closely related to ours. They established a Cramér-
type moderate deviation result for Huber estimator µ̂H defined in (4.5) by using a Bahadur
representation for the Huber estimator. Theorem 2.1 in their paper reveals that µ̂H − µ
is asymptotically close to n−1

∑n
i=1 f(Yi − µ), where f(·) is defined by (4.2). There-

fore, it is easy to see that the Huber estimator µ̂H is close to the winsorized mean µ̂W =
n−1

∑n
i=1 f(Yi) as τ →∞. Theorem 2.3 in Zhou et al. (2018) for the Huber estimator can

be restated as follows. The notation an ≪ bn means an = o(bn) as n→∞.
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REMARK 4.1. Assume E|Y |3 <∞. Zhou et al. (2018) proved for n1/4 ≪ τ ≪ n1/2 that

P(
√
nσ−1|µ̂H − µ|> x)

2(1−Φ(x))

= 1+O(1)
{ (

√
logn+ x)3√

n
+

1+ x

n3/10
+

(1+ x)
√
n

τ2
+ e−O( n

τ2 )
}

(4.13)

uniformly for 0≤ x= o(min{√n/τ, τ2/√n}).

Compared to their condition n1/4 ≪ τ ≪ n1/2, our condition τ ≥O(n1/6) is less restric-
tive. Moreover, when τ ≫ n1/4, both of our convergence rate and the associated converging
range of x improve theirs. Our improvement mainly relies on the explicit formula of the
self-normalized winsorized mean presented in (4.10) and our fundamental result for gen-
eral self-normalized sum established in Theorem 2.1. In addition, since the higher moment
E[Y 4]<∞ is assumed, after correcting the bias in normal approximation, the convergence
rate and the associated range of x could be significantly improved.

The common downside of our bias-corrected result in Theorem 4.1 and the normal ap-
proximation for Huber estimator by Zhou et al. (2018) in Remark 4.1 is that the limiting dis-
tributions depend on unknown parameters. In real-world applications, if reliable estimations
for the unknown parameters are unavailable, we can directly use normal approximation for
the self-normalized winsorized mean presented in the following theorem, where only third
moment is required and the limiting distribution does not depend on any unknown parame-
ters.

THEOREM 4.3. Assume E|Y |3 <∞. Then there exist absolute positive constants c1, c2
and A such that for

(4.14) τ ≥ c1n
1/4max{E|Y |3/σ2, (E|Y |3/σ)1/2},

it holds that

P(S∗
τ,n >x)

1−Φ(x)
= 1+O1

((1 + x3)E|Y |3
σ3

√
n

+
(1 + x)

√
nE|Y |3

στ2

)
,(4.15)

uniformly for x ∈ (0, c2min{n1/6σ3/E|Y |3, τ2σ/(√nE|Y |3)}), where O1 is a bounded

quantity satisfying |O1| ≤A. Similar result holds for P(S∗
τ,n <−x).

THEOREM 4.4. Under the conditions of Theorem 4.3, the same result as (4.15) holds for

U∗
τ,n

It can be observed that the convergence rate and the converging range of x also outper-
form the results of Zhou et al. (2018) shown in Remark 4.1, and our condition on τ is less
restrictive. We relegate the proof of Theorem 4.3 to Section A.13 and the proof of Theorem
4.4 in Section A.14 in the Supplementary Material.

4.2. Simultaneous confidence intervals. Cramér type moderate deviation results are use-
ful in providing theoretical guarantees for a wide spectrum of statistical applications, includ-
ing the multiple testing procedure and multiple confidence intervals for ultra-high dimen-
sional parameters. For an illustrative example, we will construct simultaneous confidence
intervals for the means under the following ultra-high mean model by using the studentized
winsorized mean estimator defined in (4.6). We consider

Zi = µ+ ǫi, i= 1, · · · , n,
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where {Z1, . . . ,Zn} are i.i.d. observations, µ = (µ1, · · · , µp)T ∈ R
p, and {ǫ1, . . . ,ǫi} are

i.i.d. errors. Denote Σ = Cov(ǫi) := (Σij)p×p. Assume there exist constants C1,C2 such
that max1≤j≤pE|Zij |3 ≤C1 and min1≤j≤pΣjj ≥C2.

THEOREM 4.5. Assume the dimensionality p, the significance level α and the threshold-

ing parameter τ satisfying log(p/α) = o(n1/3) and τ ≫ n1/3. Then for α ∈ (0,1), and t0
satisfying the equation

t0
1 + t20/n

=Φ−1
(
1− α

2p

)
,

we have

∑n
i=1 f(Zij)

n
± t0
n

√√√√
n∑

i=1

(
f(Zij)

)2 − 1

n

[ n∑

i=1

f(Zij)
]2

, (Lj ,Uj), 1≤ j ≤ p

are the 1−α−o(1) simultaneous confidence intervals for
(
µj
)p
j=1

, where f(·) is the function

defined in (4.2).

The proof of Theorem 4.5 will be provided in Section A.15 in the Suppplementary Mate-
rial.

5. Proofs. In this section, we present proofs of Theorem 2.1, Theorems 3.1–3.3 and
Theorems 4.1. Throughout the rest of this section,A andC denote positive absolute constants
that may take different values at each appearance.

5.1. Proof of Theorem 2.1. We prove the theorem for the two scenarios 0 < x ≤ 3 and
x > 3, respectively. First, we prove it for 0< x≤ 3. For this range, it is sufficient to prove a
Berry-Esseen bound as the following proposition will show. The proof of Proposition 5.1 is
postponed to Section A.1 the Supplementary Material.

PROPOSITION 5.1. For 0< x≤ 3, there exists an absolute constant A> 0 such that
∣∣P(Sn > xVn + c)− [1−Φ(x+ c)]

∣∣≤AL3,n.(5.1)

Note that 1− Φ(3.6) ≤ 1− Φ(x+ c) ≤ 1 for 0 < x ≤ 3 and |c| ≤ x/5. Thus, it follows
from Proposition 5.1 that for 0< x≤ 3,

P(Sn > xVn + c) = [1−Φ(x+ c)](1 +O(1 + x)L3,n).(5.2)

Moreover, it holds for 0<x≤ 3 satisfying (2.6) that

|(Ψ∗
x)

−1 − 1| ≤Ax3L3,n ≤AL3,n,

which combining with (5.2) entails that

P(Sn > xVn + c) = [1−Φ(x+ c)]Ψ∗
x(1 +O(1 + x)L3,n).

Consequently, we have

P(Sn >xVn + c) = [1−Φ(x+ c)]Ψ∗
xe

O1Rx(1 +O(1 + x)L3,n),

where the quantity |O1| ≤ A for some absolute constant. This completes the proof for 0 <
x≤ 3.

Next we deal with the case x > 3. By applying the elementary inequality

(5.3) 1 + s/2− s2 ≤ (1 + s)1/2 ≤ 1 + s/2,
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for s= V 2
n − 1, we obtain

1

2
(V 2

n + 1)− (V 2
n − 1)2 ≤ Vn ≤ 1

2
(V 2

n +1).

Therefore, plugging in the above upper and lower bounds yields

(5.4) P (Sn > xVn + c)≥ P
(
2xSn − x2V 2

n ≥ x2 +2xc
)

and

P (Sn >xVn + c)(5.5)

≤ P
(
2xSn − x2V 2

n ≥ x2 +2xc− x∆n

)

+ P

(
Sn > xVn + c, |V 2

n − 1|> x−1(1 ∨ 6R1/2
x )

)
,

where ∆n =min{2x
(
V 2
n − 1

)2
, x−1(2∨72Rx)} and the notation a∨bmeans the maximum

of a and b. The upper bound holds because

P

(
Sn > xVn + c, |V 2

n − 1| ≤ x−1(1 ∨ 6R1/2
x )

)

≤ P

(
2xSn − x2V 2

n ≥ x2 + 2xc− 2x2
(
V 2
n − 1

)2
, |V 2

n − 1| ≤ x−1(1∨ 6R1/2
x )

)

≤ P
(
2xSn − x2V 2

n ≥ x2 + 2xc− x∆n

)
.

The following Propositions 5.2–5.4 draw an outline of the proof for the case x > 3. Their
proofs are relegated to Sections A.2–A.4 in the Supplementary Material.

PROPOSITION 5.2. There exists an absolute constant A such that

P
(
2xSn−x2V 2

n ≥ x2 + 2xc
)

(5.6)

=[1−Φ(x+ c)]Ψ∗
xe

O1Rx{1 +O2(1 + x)L3,n},
for x> 3 satisfying (2.6) and (2.7) and |c|<x/5, where |O1| ≤A and |O2| ≤A.

PROPOSITION 5.3. There exist absolute constants A1 and A2 such that

P
(
2xSn−x2V 2

n ≥ x2 + 2xc− x∆n

)
(5.7)

≤ [1−Φ(x+ c)]Ψ∗
xe

A1Rx{1 +A2(1 + x)L3,n},
for x> 3 satisfying (2.6) and (2.7), and |c|< x/5.

PROPOSITION 5.4. There exist absolute constants A1 and A2 such that

P

(
Sn ≥ xVn + c, |V 2

n − 1|> x−1(1∨ 6R1/2
x )

)
(5.8)

≤A1Rx[1−Φ(x+ c)]Ψ∗
xe

A2Rx ,

for x> 3 satisfying (2.6) and (2.7), and |c|< x/5.

We obtain by substituting the results in Propositions 5.3–5.4 into (5.5) that

P (Sn > xVn + c)

≤ [1−Φ(x+ c)]Ψ∗
xe

A1Rx{1 +A1Rx +A2(1 + x)L3,n}
≤ [1−Φ(x+ c)]Ψ∗

xe
ARx{1 +A(1 + x)L3,n}

which together with the result in Proposition 5.2 yields the desired result (2.5) for x > 3. The
proof is completed.
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5.2. Proof of Theorem 3.1. The main idea is to apply the big-block-small-block tech-
nique to construct a general self-normalized sum based on an independent sequence to
which our main result Theorem 2.1 can be applied. Denote B2

n =
∑n

i=1Eξ
2
i . We first ap-

ply Berry-Esseen bound for sum of one-dependent random variables to cope with the case
0≤ x≤O(

√
logn). Note that
∣∣∣∣P(Sn ≥ xVn)−

[
1−Φ

( x√
1 + 2ρn

)]∣∣∣∣

≤
∣∣∣∣P
(
Sn ≥ xBn(1− n−1/3)1/2

)
−
[
1−Φ

( x√
1 + 2ρn

)]∣∣∣∣

+

∣∣∣∣P
(
Sn ≥ xBn(1 + n−1/3)1/2

)
−
[
1−Φ

( x√
1 + 2ρn

)]∣∣∣∣

+ P

(
|V 2

n −B2
n|> n−1/3B2

n

)

:=E1 +E2 +E3.

Recalling the definition of ρn in (3.1), we have Var(Sn) = (1 + 2ρn)B
2
n. By noticing the

assumptions

Eξ4i ≤ a41, Eξ22 ≥ a22, a= a1/a2, −1/2< ρ≤ ρn ≤ 1/2

and applying the Berry-Esseen bound for sums of one-dependent random variables (see
Shergin (1980)), we obtain

E1 ≤
A(ρ)a3√

n
+
∣∣∣Φ
( x√

1 + 2ρn

)
−Φ

(x(1− n−1/3)1/2√
1 + 2ρn

)∣∣∣

≤A(ρ)a3(n−1/2 + x2n−1/3)≤A(ρ)a3(1 + x)2n−1/3,

where A(ρ) is a positive constant depending on ρ and may take different values at each
appearance. In the same manner, this above bound applies to E2 as well. As for E3, it follows
by Chebyshev’s inequality that

E3 ≤ (n1/3B−2
n )2E[(V 2

n −B2
n)

2]≤Aa4n−1/3.

Therefore,
∣∣∣∣P(Sn ≥ xVn)−

[
1−Φ

( x√
1 + 2ρn

)]∣∣∣∣≤A(ρ)a4(1 + x)2n−1/3,(5.9)

Moreover, observe that 1−Φ( x√
1+2ρn

)≥ 1−Φ( 2
√
3√

1+2ρ
) for 0≤ x≤ 2

√
3 and

(5.10) 1−Φ(
x√

1 + 2ρn
)≥A(ρ)x−1 exp

{
− x2

2(1 + 2ρ)

}

for x > 2
√
3. As a consequence, there exists a constant cρ depending on ρ such that (3.2)

holds for 0≤ x≤ cρ
√
logn.

Next we turn to the proof for x > cρ
√
logn. Let the length of big blocks be l = [nα], and

each small block contains only one random variable. Denote k = [n/(l+1)]. Without loss of
generality, let us assume n/(l + 1) to be an integer, then the sequence of {ξi}1≤i≤n can be
divided into k big blocks and k small blocks. Observe that if n/(l+ 1) is not an integer, the
sequence of {ξi}1≤i≤n will be divided into k+1 big blocks and k small blocks, in which the
first k big blocks are of size l and the last one is of size n− (l+1)[n/(l+1)]. Although the
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size of the last big block might be different, our analysis also applies under this scenario. For
1≤ j ≤ k, the j-th big block and the corresponding block sums are given by

Hj = {i : (j − 1)(l+ 1) + 1≤ i≤ j(l+1)− 1} and Xj =
∑

i∈Hj

ξi, Y
2
j =

∑

i∈Hj

ξ2i ,

Moreover, we denote

Sn1 =

k∑

j=1

Xj , V 2
n1 =

k∑

j=1

Y 2
j , B2

n1 = EV 2
n1,(5.11)

Sn2 =

k∑

j=1

ξj(l+1), V 2
n2 =

k∑

j=1

ξ2j(l+1), B2
n2 = EV 2

n2.(5.12)

Observe that {Xj}1≤j≤k and {ξj(l+1)}1≤j≤k both consists of independent random vari-
ables. As Sn1 is the sum of ξ′is in big blocks and it is the main part of

∑n
i=1 ξi, while Sn2

corresponds to the small blocks. The big-block-small block technique splits the sum
∑n

i=1 ξi
into two parts Sn1 and Sn2, each of which is a sum of independent random variables. Let
τ =Bn2/x and we do truncations ξ̂i = ξi1(|ξi| ≤ τ) only for the ξi’s in small blocks, that is,
i= j(l+1) for 1≤ j ≤ k, so

P (Sn ≥ xVn)≤ P(Ŝn ≥ xV̂n) + P(Sn ≥ xVn, max
1≤j≤k

|ξj(l+1)|> τ),(5.13)

P(Sn ≥ xVn)≥ P(Ŝn ≥ xV̂n)− P(Ŝn ≥ xV̂n, max
1≤j≤k

|ξj(l+1)|> τ),(5.14)

where Ŝn = Sn1 + Ŝn2, V̂ 2
n = V 2

n1 + V̂ 2
n2 with Ŝn2 =

∑k
j=1 ξ̂j(ℓ+1) and V̂ 2

n2 =
∑k

j=1 ξ̂
2
j(ℓ+1).

For a positive number d1 > 0, we have the upper bound

P(Ŝn ≥ xV̂n)≤ P
(
Sn1 ≥ xVn1 − d1n

−α

2 xBn

)
(5.15)

+ P
(
Ŝn2 ≥ d1n

−α

2 xBn

)

and the lower bound

P(Ŝn ≥ xV̂n)≥ P
(
Sn1 ≥ xVn1 + d1n

−α

2 xBn

)
(5.16)

− P
(
Sn1 ≥ xVn1, V

2
n1 <B2

n/4
)

− P
(
Ŝn2 <−d1n−

α

2 xBn + x(V̂n − Vn1), V
2
n1 >B2

n/4
)
.

We can obtain the following bounds for the terms involved in (5.15) and (5.16). The proofs
of Propositions 5.5 and 5.6 are given in Sections A.5 and A.6 in the Supplementary Material.

PROPOSITION 5.5. There exists an absolute positive constant d0 and a constantA(ρ, d0)
depending on ρ and d0 such that, for d1 = κρa

2 with some sufficiently large constant κρ,

P

(
Sn1 ≥ xVn1 + d1n

−α/2xBn

)
(5.17)

=
[
1−Φ(

x√
1 + 2ρn

)
](

1 +O1

( a4x4
n1−α

+
a2x2

nα/2
+

a3x

n
1−α

2

))
,

uniformly for x ∈ (2, d0a
−1min{nα/4, n(1−α)/4}), where |O1| ≤ A(ρ, d0). A similar result

holds for P(Sn1 ≥ xVn1 − d1n
−α/2xBn). Moreover,

P

(
Sn1 ≥ xVn1, V

2
n1 <

B2
n

4

)
(5.18)
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≤ Aa4x4

n1−α

[
1−Φ

( x√
1 + 2ρn

)]
exp

{
Aa4

x4

n1−α
+Aa3

x3√
n

}
,

uniformly for x∈ (2, d0a
−1n

1

2
(1−α)).

PROPOSITION 5.6. For d1 = κρa
2 with κρ ≥ 10, we have

P
(
Ŝn2 > d1n

−α/2xBn

)
≤ exp{−κρx2/6},(5.19)

P
(
Ŝn2 <−d1n−α/2xBn + x(V̂n − Vn1), V

2
n1 >B2

n/4
)

(5.20)

≤ exp{−κρx2/14}.

Note that for x > cρ
√
logn and sufficiently large κρ,

exp{−κρx2/6}
1−Φ

(
x√

1+2ρn

) ≤ exp{−κρx2/12} ≤ n−1/4.(5.21)

By choosing α= 1/2 and combining (5.17)-(5.21), we obtain

P

(
Ŝn ≥ xV̂n

)
=
[
1−Φ

( x√
1 + 2ρn

)](
1 +O

(a4x2
n1/4

))
(5.22)

uniformly for x ∈ (cρ
√
logn,d0a

−1n1/8).
In addition, we can bound the error terms in (5.13) and (5.14) as follows. The proof of

Proposition 5.7 is shown in Section A.7 in the Supplementary Material.

PROPOSITION 5.7. Under the conditions in Theorem 3.1, we have for x ∈ (cρ
√
logn,d0a

−1n1/8)
that

P

(
Ŝn ≥ xV̂n, max

1≤j≤k
|ξj(l+1)|> τ

)

≤A(ρ, d0)
a4(1 + x)4

n1/2

[
1−Φ

( x√
1 + 2ρn

)](5.23)

and

P

(
Sn ≥ xVn, max

1≤j≤k
|ξj(l+1)|> τ

)

≤A(ρ, d0)
a4(1 + x)4

n1/2

[
1−Φ

( x√
1 + 2ρn

)]
.

(5.24)

Consequently, substituting (5.22)–(5.24) into (5.13) and (5.14) yields the desired result
(3.2). This completes the proof of Theorem 3.1.

5.3. Proof of Theorem 3.2. The proof for Theorem 3.2 again builds on the big-block-
small-block technique, and also exploits a lemma in Shao and Yu (1996) to replace the
weakly dependent big blocks and small blocks by independent random variables, respec-
tively. We begin the proof by introducing three essential lemmas from the literature. Lemma
5.1 (Theorem 4.1 of Shao and Yu (1996)) and Lemma 5.2 (Theorem 10.1.b of Lin and Bai
(2010)) concern the bound of moments under weak dependence while Lemma 5.3 (Lemma
2.1 of Berbee (1987)) shows that a β-mixing sequence of random variables can be replaced
by an independent sequence of random variables in a domain whose measure is at least
1−∑n

i=1 β
(i).
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LEMMA 5.1. (Theorem 4.1 in Shao and Yu (1996).) Let {Xi, i ≥ 1} be a sequence of

zero-mean random variables with E|Xi|r ≤ µr for r > 2 and µ > 0. Assume that mixing

condition (3.6) holds, then

E

[∣∣∣
i=k+m∑

i=k

Xi

∣∣∣
r′]

≤Cmr′/2µr
′

,

for any 2≤ r′ < r,m≥ 1 and k ≥ 0, where C is a constant that depends on r′, r, a1, a2 and

τ .

LEMMA 5.2. (Theorem 10.1.b of Lin and Bai (2010).) Assume {Xi}i≥1 is a sequence

of random variables and β(n) is the β-mixing coeffient defined in (3.5). Denote by σk1 and

σ∞k+n the σ-fields generated by {Xi}1≤i≤k and {Xi}i≥k+n, respectively. For X ∈ Lp(σ
k
1 )

and Y ∈Lq(σ
∞
k+n) with p, q, r≥ 1 and 1

p +
1
q +

1
r = 1, we have

(5.25) |EXY − EXEY | ≤ 8β(n)1/r‖X‖p‖Y ‖q .

For two random variables (or vectors) X and Y , define

β(X,Y ) =
1

2
sup
A

((
PX,Y − PX × PY

)
(A)−

(
PX,Y − PX × PY

)
(Ac)

)
.

LEMMA 5.3. (Lemma 2.1 of Berbee (1987).) Let {ξi,1≤ i ≤ n} be a sequence of ran-

dom variables on the same probability space and define β(i) = β(ξi, (ξi+1, . . . , ξn)). Then

the probability space can be extended with random variables ξ̃i distributed as ξi such that

{ξ̃i}1≤i≤n are independent and

(5.26) P

(
ξi 6= ξ̃i, for some 1≤ i≤ n

)
≤ β(1) + · · ·+ β(n−1).

Recall the definition of block sums {Yj}1≤j≤k in (3.7). We set the size of big blocks
as m1 = [nα1 ] for some 0 < α1 < 1 − α and the size of small blocks as 1. Denote k1 =
k/(m1 + 1), where k = [n/l]. For simplicity of presentation, we assume k/(m1 + 1) to be
an integer, as explained in the proof of Theorem 3.1. The u-th big block is given by

Iu =
{
j : (m1 +1)(u− 1) + 1≤ j ≤ (m1 +1)u− 1

}
, for 1≤ u≤ k1.

Define

Sk =

k∑

j=1

Yj , V 2
k =

k∑

j=1

Y 2
j , ξu =

∑

j∈Iu
Yj, η2u =

∑

j∈Iu
Y 2
j ,

Sk,1 =

k1∑

u=1

ξu, V 2
k,1 =

k1∑

u=1

η2u, Sk,2 =

k1∑

u=1

Yu(m1+1), V 2
k,2 =

k1∑

u=1

Y 2
u(m1+1),

B2
n =

k∑

j=1

EY 2
j , B2

n,1 =

k1∑

u=1

∑

j∈Iu
EY 2

j , B2
n,2 =

k1∑

u=1

EY 2
u(m1+1).

By Lemma 5.2, it is easy to see that under the mixing condition (3.6),

(5.27)
B2

n

B2
n,1

= 1+O
(k1
k

)
= 1+O(n−α1),

ES2
k,1

B2
n,1

= 1+O(n−α) +O(n−α1).
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Let Ŷj = Yj1(|Yj| ≤ b), where b = Bn,2/(1 + x). Parallel to one-dependent case, we sepa-
rate the big blocks and small blocks right after truncating the terms inside the small blocks.
Denote

Ŝk,2 =

k1∑

u=1

Ŷu(m1+1), Ŝk = Sk,1 + Ŝk,2

and V̂ 2
k,2 =

k1∑

u=1

Ŷ 2
u(m1+1), V̂ 2

k = V 2
k,1 + V̂ 2

k,2.

It is straightforward that

P
(
Sk ≥ xVk

)
≤ P

(
Ŝk ≥ xV̂k

)
+ P

(
Sk ≥ xVk, max

1≤u≤k1

|Yu(m1+1)|> b
)
,(5.28)

P
(
Sk ≥ xVk

)
≥ P

(
Ŝk ≥ xV̂k

)
− P

(
Ŝk ≥ xV̂k, max

1≤u≤k1

|Yu(m1+1)|> b
)
.(5.29)

Further, for the main term P(Ŝk ≥ xV̂k), we choose ε= d1n
−α1/2 logn with a positive num-

ber d1 > 0 and obtain

P

(
Ŝk ≥ xV̂k

)
≤ P

(
Sk,1 ≥ xVk,1 − εxBn

)
+ P

(
Ŝk,2 > εxBn

)
,(5.30)

P

(
Ŝk ≥ xV̂k

)
≥ P

(
Sk,1 ≥ xVk,1 + εxBn

)
(5.31)

− P

(
Sk,1 ≥ xVk,1, V

2
k,1 ≤

1

4
B2

n

)

− P

(
Ŝk,2 −

xV̂ 2
k,2

V̂k + Vk,1
<−εxBn, V

2
k,1 >

1

4
B2

n

)
.

The estimate for dominated terms P(Sk,1 ≥ xVk,1 − εxBn) and P(Sk,1 ≥ xVk,1 + εxBn) is
presented in the following lemma and the proof will be shown in Section A.8.

PROPOSITION 5.8. Assume ε = d1n
α1/2 logn for a positive number d1 > 0 and α1 ≤

ατ . Under the conditions of Theorem 3.2, there exist a positive constant c0 depending on

d1, µ1/µ2, a1, a2, α and τ such that

P(Sk,1 ≥ xVk,1 ± εxBn)
/
[1−Φ(x)](5.32)

=1+O

(
(1 + x)4

n1−α−α1
+

1+ x

n(1−α−α1)/2
+

(1 + x)2

nα
+

(1+ x)2 logn

nα1/2

)

uniformly for x∈ (0, c0min{n(1−α−α1)/4, nατ/2, nα/2, (logn)−1/2nα1/4}),

For small-block-related error terms, Sk,2 and V 2
k,2 can be replaced with the sum of inde-

pendent random variables by Lemma 5.3. In addition, following a similar proof to Proposition
5.6, we obtain that under ε= d1n

−α1/2 logn for d1 being some positive number depending
on µ1/µ2, there exist positive numbers C1 and C2 depending on a1, a2, µ1, µ2, α and τ such
that

P

(
Ŝk,2 > εxBn

)
(5.33)

≤ exp{−C1(1 + x)2d1 logn}+C2 exp{−a2nατ/2},
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P

(
Ŝk,2 −

xV̂ 2
k,2

V̂k + Vk,1
<−εxBn, V

2
k,1 >

1

4
B2

n

)
(5.34)

≤ P

(
Ŝk,2 −

xV̂ 2
k,2

Bn/2
<−εxBn

)

≤ exp{−C1(1 + x)2d1 logn}+C2 exp{−a2nατ/2},
where the error term C2 exp{−a2nατ/2} is obtained by applying Lemma 5.3 to replace Sk,2
and V 2

k,2 with sum of independent random variables and the fact that (see Berbee (1987))

(5.35) β
(
{Xi}i∈J ′ ,{Xi}i∈J ′′

)
≤ β

(
{Xi}i≤k,{Xi}i≥n+k

)
≤ β(n),

for any sets J ′ ⊂ {i≤ k}, J ′′ ⊂ {i≥ n+ k}.
Regarding big-block-related error terms, by using Chebyshev’s inequality and Taylor ex-

pansion, we control the error term in the same manner as the proof of (A.40). We can obtain,

P

(
Sk,1 ≥ xVk,1, V

2
k,1 ≤

1

4
B2

n

)
(5.36)

≤A5
(1 + x)4

n1−α−α1

(
1−Φ

[
x
(
1 +O

(
n−α + n−α1

))])

uniformly for x ∈ (3, c0min{n(1−α−α1)/4, nατ/2}). When 0 < x≤ 3, it follows from Lem-
mas 5.1 and 5.3 and Chebyshev inequality that under condition (3.6),

P

(
Sk,1 ≥ xVk,1, V

2
k,1 ≤

1

4
B2

n

)
≤ P(V 2

k,1 ≤
1

4
B2

n)

≤ a1n
α1e−a2nατ

+ exp
{
−
B2

n,1 −B2
n/4

2
∑k1

u=1Eη
4
u

}

≤ a1n
α1e−a2nατ

+ exp{−A1n
1−α−α1µ2/µ1}

≤ A2(1 + x)4

n1−α−α1

[
1−Φ(x)

]
.

Substituting (5.39), (5.33), (5.34), and (5.36) into (5.30) and (5.31) yields

P(Ŝk ≥ xV̂k)/[1−Φ(x)](5.37)

=1+O

(
(1 + x)4

n1−α−α1
+

1+ x

n(1−α−α1)/2
+

(1 + x)2

nα
+

(1+ x)2 logn

nα1/2

)

uniformly for x ∈ (0, c0min{n(1−α−α1)/4, nατ/2, nα/2, (logn)−1/2nα1/4}).
To avoid redundance, we omit the analysis of the truncation errors in (5.28) and (5.29) as

their proofs share the same fashion with (A.59) and (A.60). Consequently, (5.37) also holds
for P(Sk ≥ xVk). Finally, we need to balance the error terms by choosing α1 and seeking the
best convergence rate or largest range for convergence. As a result, we choose α1 = (1−α)/2
when (1−α)/2 ≤ ατ , and choose α1 = ατ when (1−α)/2 > ατ , and then the desired result
follows. This completes the proof for Theorem 3.2.

5.4. Proof of Theorem 3.3. The main idea is to use one-dependent random variables to
approximate {Yj}1≤j≤k and then apply Theorem 3.1. Recall that m= [nα] and k = [n/m].
Let

Ỹj = E(Yj|εl,mj − 2m+1≤ l≤mj)
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and

T̃k =

∑k
j=1 Ỹj

(
∑k

j=1 Ỹ
2
j )

1/2
.

As {εt}t∈Z are i.i.d. random variables, {Ỹj}j≥1 are one-dependent. Note that by conditional
Jensen’s inequality, for 2≤ r≤ 4,

∥∥∥Xi − E

(
Xi

∣∣∣εℓ :mj − 2m+1≤ ℓ≤ i
)∥∥∥

r

r

= E

{∣∣∣E
[
Xi −Gk

(
F

∗
mj−2m, εmj−2m+1, . . . , εi

)∣∣∣Fi

]∣∣∣
r}

≤ E

[∣∣∣Xi −Gk

(
F

∗
mj−2m, εmj−2m+1, . . . , εi

)∣∣∣
r]

≤
[
∆r(i−mj +2m)

]r
,

which together with the assumption (3.16) and the fact thatm(j−1)+1≤ i≤mj for i ∈Hj

yields

‖ Yj − Ỹj ‖r ≤
∑

i∈Hj

∥∥∥Xi −E

(
Xi

∣∣∣εℓ : i− 2m+1≤ ℓ≤ i
)∥∥∥

r
(5.38)

≤ma1e
−a2mτ

.

The above bound shows that {Yj}1≤j≤k can be well approximated by the one-dependent
sequence {Ỹj}1≤j≤k . We can derive Theorem 3.3 by aggregating the following two proposi-
tions. The proofs of Propositions 5.9 and 5.10 will be provided in Sections A.9 and A.10 in
the Supplementary Material, respectively.

PROPOSITION 5.9. Under conditions of Theorem 3.3, we have there exists a positive

constant d0 depending on τ,α,w1, a1 and a2 such that

P(T̃k ≥ x) = [1−Φ(x)]
(
1 +O

( 1 + x2

n(1−α)/4
+

1+ x2

nα

))
,(5.39)

Uniformly for x ∈ (0, d0min{n(1−α)/8, nα/2}).

PROPOSITION 5.10. Under conditions of Theorem 3.3, we have for x > 0,

P(Tk ≥ x)≤ P(T̃k ≥ x−C1n
−1) +C2(e

−a2nατ

+ e−O(n1−α))(5.40)

and P(Tk ≥ x)≥ P(T̃k ≥ x+C1n
−1)−C2(e

−a2nατ

+ e−O(n1−α)).(5.41)

Applying Proposition 5.9 to P(T̃k ≥ x+O(n−1)) yields

P

(
T̃k ≥ x+O(n−1)

)

=
[
1−Φ

(
x+O(n−1)

)](
1 +O

( 1 + x2

n(1−α)/4
+

1+ x2

nα

))

=
[
1−Φ(x)

](
1 +O

( 1 + x2

n(1−α)/4
+

1+ x2

nα

))

uniformly for x∈ (0, d0min{n(1−α)/8, nα/2}). Note that the error term e−a2nατ

+ e−O(n1−α)

decays at an exponential rate, which is always faster than the polynomial rate. By substituting
the above result into (5.40) and (5.41) leads to the desired result (3.21). The proof of Theorem
3.3 is completed.
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Supplementary Material to “Asymptotic Distributions of High-Dimensional
Distance Correlation Inference"

Lan Gao, Qi-Man Shao and Jiasheng Shi

This Supplementary Material contains all technical details of proofs. Section A provides
the proofs of all the propositions, Theorems 4.1, 4.3 and 4.5, and Corollary 2.1. Section B
presents the proofs of lemmas.

APPENDIX A: PROOF OF PROPOSITIONS

A.1. Proof of Proposition 5.1. The proof borrows some techniques from Wang (2011).
The main idea is to first truncate the random variables, and then to apply Berry-Esseen bound
for U-statistics and Berry-Esseen bound for sum of independent random variables for the
upper bound and the lower bound, respectively. Define

X̂i =Xi1(|(1 + x)Xi| ≤ 1), Ŝn =

n∑

i=1

X̂i,

Ŷi = Yi1(|(1 + x)Yi| ≤ 1), V̂ 2
n =

n∑

i=1

Ŷ 2
i .

It is easy to see
∣∣P(Sn > xVn + c)− [1−Φ(x+ c)]

∣∣(A.1)

≤
∣∣P(Ŝn >xV̂n + c)− [1−Φ(x+ c)]

∣∣

+

n∑

i=1

P (|(1 + x)Xi|> 1) +

n∑

i=1

P (|(1 + x)Yi|> 1)

≤
∣∣P(Ŝn >xV̂n + c)− [1−Φ(x+ c)]

∣∣+ (1 + x)3L3,n.

Let B̂2
n =

∑n
i=1EŶ

2
i andKi = Ŷ 2

i −EŶ 2
i , then it follows from the basic inequality (5.3) that

P(Ŝn > xV̂n + c)≥ P

(
2xŜn − x2V̂ 2

n >x2 + 2xc
)
,(A.2)

and

P(Ŝn > xV̂n + c)(A.3)

≤ P

(
Ŝn −

x

2B̂n

(
V̂ 2
n − B̂2

n

)
+

x

B̂3
n

(
V̂ 2
n − B̂2

n

)2
> xB̂n + c

)

= P

(
n∑

i=1

(Ui −EUi) +
x

B̂3
n

∑

i 6=j

KiKj ≥ xB̂n + c−
n∑

i=1

EUi

)
,

where Ui = X̂i − x
2B̂n

Ki +
x
B̂3

n

K2
i . Observe that

∑n
i=1(Ui − EUi) +

x
B̂3

n

∑
i 6=jKiKj is a

U-statistic. We will apply the Berry-Esseen bound for U-statistics established by Alberink
(2000). Obviously, |B̂2

n − 1| ≤ (1 + x)L3,n ≤ c1 by (2.6), hence 3/4 ≤ B̂2
n ≤ 5/4 for c1 ≤

1/2. We obtain that for 0< x≤ 3,

∣∣∣
n∑

i=1

EUi

∣∣∣≤ (1 + x)2
n∑

i=1

E|Xi|3 +
x

B̂3
n

n∑

i=1

EŶ 4
n ≤AL3,n,
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∣∣∣
n∑

i=1

Var(Ui)− 1
∣∣∣≤AL3,n,

n∑

i=1

E|Ui|3 ≤
n∑

i=1

A
(
E|X̂i|3 +

x3

B̂3
n

E|Ki|3 +
x3

B̂9
n

E|Ki|6
)
≤AL3,n,

and
∑

i 6=j

Var(
x

B̂3
n

KiKj) =
∑

i 6=j

x2

B̂6
n

EK2
i EK

2
j ≤AL2

3,n.

It follows from the Berry-Esseen bound for U-statistics (see Theorem 1 in Alberink
(2000)) that

∣∣∣∣P
( n∑

i=1

(Ui − EUi) +
x

B̂3
n

∑

i 6=j

KiKj ≥ xB̂n + c−
n∑

i=1

EUi

)
− [1−Φ(x+ c)]

∣∣∣∣

≤AL3,n +
∣∣∣[1−Φ(xB̂n + c−

n∑

i=1

EUi)]− [1−Φ(x+ c)]
∣∣∣

≤AL3,n +A
(
(B̂n − 1) +

∣∣∣
n∑

i=1

EUi

∣∣∣
)
≤AL3,n,

which together with (A.3) yields the upper bound

(A.4) P(Ŝn > xV̂n + c)− [1−Φ(x+ c)]≤AL3,n.

Regarding the lower bound, denote Ŵi = 2xX̂i − x2Ŷ 2
i . It is easy to find that for 0< x≤ 3,

∣∣∣
n∑

i=1

EŴi + x2
∣∣∣≤AxL3,n,

∣∣∣
n∑

i=1

Var(Ŵi)− 4x2
∣∣∣≤Ax2L3,n,

and
n∑

i=1

E|Ŵi|3 ≤Ax3L3,n.

Consequently, the Berry-Esseen bound for sums of independent random variables implies
∣∣P(2xŜn − x2V̂ 2

n >x2 + 2xc)− [1−Φ(x+ c)]
∣∣(A.5)

≤
∣∣∣P
( ∑n

i=1(Ŵi −EŴi)

(
∑n

i=1Var(Ŵi))1/2
>x+ c−AL3,n

)

− [1 +Φ(x+ c−AL3,n)]
∣∣∣+ |Φ(x+ c−AL3,n)−Φ(x+ c)|

≤ A
∑n

i=1E|Ŵi|3(∑n
i=1Var(Ŵi)

)3/2 +AL3,n ≤AL3,n,

which together with (A.2) yields

(A.6) P(Ŝn >xV̂n + c)− [1−Φ(x+ c)]≥−AL3,n.

Combining (A.1), (A.4) with (A.6), we obtain that for 0< x≤ 3,
∣∣P(Sn > xVn + c)− [1−Φ(x+ c)]

∣∣≤AL3,n.

This completes the proof.
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A.2. Proof of Propositions 5.2. Before starting to prove Proposition 5.2, we first collect
some notations related to the conjugated method, which is the main tool to prove Propositions
5.2–5.3. For 1 ≤ i ≤ n, let Wi = 2xXi − x2Y 2

i and (ξi, ηi) be independent random vectors
with distribution

(A.7) Vi (x, y) =
E{eλWi

1(Xi ≤ x, Yi ≤ y)}
EeλWi

,

Denote W̃i = 2xξi − x2η2i . It holds that

EW̃i =
EWie

λWi

EeλWi
,

Var W̃i =
EW 2

i e
λWi

EeλWi
− (EW̃i)

2,

E|W̃i|3 =
E|Wi|3eλWi

EeλWi
.

We establish the expansion of the above moments in the Lemma below. The proof of Lemma
A.1 will be given in Section B.1.

LEMMA A.1. Let Wi = 2xXi − x2Y 2
i . For 1

4 ≤ λ≤ 3
4 and x > 0 satisfying (2.7), there

exists an absolute constant A such that

EeλWi = 1+ 2λ2x2EX2
i − λx2EY 2

i +
4

3
λ3x3EX3

i − 2λ2x3EXiY
2
i +O1Rx,i,(A.8)

= exp

{
2λ2x2EX2

i − λx2EY 2
i +

4

3
λ3x3EX3

i − 2λ2x3EXiY
2
i +O2Rx,i

}
,

(A.9) EWie
λWi = 4λx2EX2

i − x2EY 2
i +4λ2x3EX3

i − 4λx3EXiY
2
i +O3Rx,i,

(A.10) EW 2
i e

λWi = 4x2EX2
i +8λx3EX3

i − 4x3EXiY
2
i +O4Rx,i,

(A.11) E|Wi|3eλWi =O5x
3
(
E|Xi|3 +E|Yi|3

)
+O6Rx,i,

where |Oi| ≤A for i= 1, . . . ,6.

The next lemma is Lemma 2.1 in Wang (2011) with some modifications.

LEMMA A.2. We have for x satisfying (2.7) that

(1 + x)4(EX2
i )

2 ≤ 2δx,i,

(1 + x)5EX2
i E|Xi|3 ≤ 2δx,i,

(1 + x)6(E|Xi|3)2 ≤ δx,i,

and similar results hold for Yi. In addition, if x also satisfies (2.6), then

(1 + x)4L2
3,n ≤ 2δx.

By Lemmas A.1 and A.2, it is readily seen that under (2.7),

EW̃i = x2
(
4λEX2

i −EY 2
i

)
+ x3

(
4λ2EX3

i − 4λEXiY
2
i

)
+O1Rx,i,

Var W̃i = 4x2EX2
i + x3

(
8λEX3

i − 4EXiY
2
i

)
+O2Rx,i,
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and

E
∣∣W̃i

∣∣3 =O3x
3
(
E |Xi|3 +E |Yi|3

)
+O4Rx,i.

Put mn =
∑n

i=1EW̃i, σ2n =
∑n

i=1 V arW̃i, vn =
∑n

i=1E
∣∣W̃i

∣∣3. Consequently, we obtain

mn = (4λ− 1)x2 + x3

(
4λ2

n∑

i=1

EX3
i − 4λ

n∑

i=1

EXiY
2
i

)
+O1Rx,(A.12)

σ2n = 4x2 + x3

(
8λ

n∑

i=1

EX3
i − 4

n∑

i=1

EXiY
2
i

)
+O2Rx,(A.13)

and

(A.14) vn =O3x
3L3,n +O4Rx.

Define m (λ) =
∑n

i=1 logEe
λWi , therefore, mn =m′(λ) and σ2n =m′′(λ). Before proving

Proposition 5.2, let us present the following lemma that will be applied in the proof.

LEMMA A.3. For x satisfying (2.6) and (2.7), if |δ (x) |< 1
2x

2 and |δ0 (x) |< 1
2x

2, then

the equation

m′ (λ) = x2 + δ (x) ,

has a unique solution λδ . In addition, λδ satisfies 1
4 <λδ <

3
4 and

(A.15)

∣∣∣∣∣λδ −
(
1

2
+
δ(x)

4x2

)
+ x

(
λ2δ

n∑

i=1

EX3
i − λδ

n∑

i=1

EXiY
2
i

)∣∣∣∣∣≤Ax−2Rx,

and

(A.16)

∣∣∣∣λδ − λδ0 −
δ (x)− δ0(x)

4x2

∣∣∣∣≤A{x−2Rx + |δ(x)− δ0(x)|x−1L3,n}.

Moreover, we have

(A.17) m (λδ) =
(
2λ2δ − λδ

)
x2 + x3

(
4

3
λ3δ

n∑

i=1

EX3
i − 2λ2δ

n∑

i=1

EXiY
2
i

)
+O1Rx,

and

(A.18) |m (λδ)−m (λδ0)| ≤A (Rx + |δ (x)− δ0 (x)|) .

The proof of Lemma A.3 will be shown in Section B.2. Now we are ready to prove Propo-
sition 5.2. The main idea is to use the conjugate method (see (4.9) in Petrov (1965)). Assume

λ1 is the solution to m′(λ) = x2 + 2xc. Write S̃n =
∑n

i=1 W̃i, Un =
(
S̃n −mn

)
/σn. It is

well-known that by the conjugate method

P
(
2xSn − x2V 2

n ≥ x2 +2xc
)
=exp{m(λ1)}Ee−λ1S̃n

1(S̃n ≥ x2 +2xc)

=exp{m(λ1)− λ1mn}Ee−λ1σnUn
1(Un ≥ 0).

Let Z be a standard normal random variable. Define

I1 = sup
x∈R

|P(Un ≤ x)− P(Z ≤ x)|,

I2 = Ee−λ1σnZ
1(Z ≥ 0).
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Integration by parts gives
∣∣Ee−λ1σnUn

1(Un ≥ 0)− Ee−λ1σnZ
1(Z ≥ 0)

∣∣≤ 2I1.

As a result,
∣∣P
(
2xSn − x2V 2

n ≥ x2 +2xc
)
− exp{m(λ1)− λ1mn}I2

∣∣(A.19)

≤ 2exp{m(λ1)− λ1mn}I1.
Applying the Berry-Esseen theorem to I1 and by the fact of (A.13) and (A.14), it is easy to
find that for x > 3 satisfying (2.6),

(A.20) I1 ≤A
vn
σ3n

≤A(L3,n + x−3Rx).

Regarding I2, we have

I2 =
eλ

2
1σ

2
n/2

√
2π

∫ ∞

λ1σn

e−t2/2dt=
1√
2π

1−Φ(λ1σn)

ϕ(λ1σn)
,

where φ(x) is the standard normal density function. Let ψ(x) = 1−Φ(x)
ϕ(x) . For x > 3,

(A.21) x−1/2≤ ψ(x)≤ x−1 and |ψ′(x)|= |xψ(x)− 1| ≤ x−2.

By (A.13) and the fact that 1/4< λ1 < 3/4,

|λ1σn − 2λ1x|=
λ1|σ2n − 4x2|
σn + 2x

≤A
(
x2L3n + x−1Rx

)
,

therefore, under (2.6) for small constant c1, there exists some θ∗ between 2λ1x and λ1σn,
such that

I2 =
1√
2π

{ψ (2λ1x) +ψ′ (θ∗) (λ1σn − 2λ1x)}(A.22)

=
1√
2π
ψ (2λ1x)

{
1 +O1(xL3,n + x−2Rx)

}

= e2λ
2
1x

2

[1−Φ(2λ1x)]
{
1 +O1(xL3,n + x−2Rx)

}
.

Since 1/4< λ1 < 3/4, we have for x > 3

e2λ
2
1x

2

[1−Φ(2λ1x)]≥Ax−1,

which yields

I1 ≤Ae2λ
2
1x

2

[1−Φ(2λ1x)] (xL3,n + x−2Rx).

Consequently, by (A.19)–(A.22) and mn =m′(λ1) = x2 +2xc, we arrive at

P(2xSn − x2V 2
n ≥ x2 + 2xc)(A.23)

= exp
{
m(λ1) + (2λ21 − λ1)x

2 − 2λ1xc
}

× [1−Φ(2λ1x)]
{
1 +O1xL3,n +O2x

−2Rx

}

= exp
{
m(λ1) +

1

2
(x+ c)2 − λ1(x

2 + 2xc)
}

× [1−Φ(x+ c)] eO1Rx{1 +O2xL3,n},
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and the last equality holds because

|λ1 − γ| ≤A1xL3,n +A2x
−2Rx.

By applying (A.15) and (A.17) in Lemma A.3, where γ = (1 + c/x)/2. Noticing that
x4L2

3,n ≤ 2δx < 2Rx by Lemma A.2, we obtain for x satisfying (2.6) and (2.7) that

(2λ21 − λ1)x
2 +

1

2
(x+ c)2 − λ1(x

2 +2xc) = 2x2(λ1 − γ)2 ≤O1Rx.

Thus (A.17) implies

m(λ1) +
1

2
(x+ c)2 − λ1(x

2 +2xc)(A.24)

=
4

3
γ3x3

n∑

i=1

EX3
i − 2γ2x3

n∑

i=1

EXiY
2
i +O1Rx.

Finally, we arrive at the desired result (5.6) by substituting (A.24) into (A.23). The proof is
completed.

A.3. Proof of Proposition 5.3. The proof again relies on the conjugate method and a
randomized concentration inequality for independent random variables. Recalling the def-
initions of λ1, S̃n and Un at the very beginning of Section A.2, we have by the conjugate
method

P
(
2xSn − x2V 2

n ≥ x2 +2xc− x∆n

)
(A.25)

= exp{m(λ1)}Ee−λ1S̃n
1(S̃n ≥ x2 +2xc− x∆̃n)

= exp{m(λ1)− λ1mn}Ee−λ1σnUn
1(Un ≥−x∆̃n

σn
)

:= P1 +P2,

where

P1 = exp{m(λ1)− λ1mn}Ee−λ1σnUn
1(Un > 0),

P2 = exp{m(λ1)− λ1mn}Ee−λ1σnUn
1(−x∆̃n

σn
≤ Un ≤ 0),

and ∆̃n =min{2x(∑n
i=1 η

2
i − 1)2, x−1(2∨ 72Rx)}. We already established in (A.23) that

P1 = exp{m(λ1) +
(
2λ21 − λ1

)
x2 − 2λ1xc}(A.26)

× [1−Φ(2λ1x)](1 +O1xL3,n +O2x
−2Rx).

As for P2, because x∆̃n ≤ 2 + 72Rx,

(A.27) P2 ≤ e2+72Rx exp{m (λ1)− λ1mn}P
(
− x∆̃n

σn
≤ Un ≤ 0

)
.

As Un is a normalized sum of independent random variables, we apply the randomized con-
centration inequality by Shao and Zhou (2016) (Theorem 4.1 therein) to estimate the con-
centration probability involved in P2. As ∆n ≤ 2x(V 2

n − 1)2, it is sufficient to bound the
concentration probability as if ∆n = 2x(V 2

n − 1)2 and ∆̃n = 2x(
∑n

i=1 η
2
i − 1)2. Denote
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Zi = Y 2
i − EY 2

i and define ∆
(i)
n as ∆(i)

n = 2x(
∑

j 6=iZj)
2. ∆̃(i)

n is defined in the same man-

ner as ∆(i)
n but with {Yi}1≤i≤n replaced by {ηi}1≤i≤n. We obtain

(A.28) P

(
− x∆̃n

σn
≤Un ≤ 0

)
≤ 17

vn
σ3n

+
5x

σn
E
∣∣∆̃n

∣∣+ 2x

σ2n

n∑

i=1

E
∣∣W̃i{∆̃n − ∆̃(i)

n }
∣∣.

Furthermore, it follows from the distribution of (ξi, ηi) defined in (A.7) that

E
∣∣∆̃n

∣∣= exp{−m(λ1)}E
{
|∆n|eλ1

∑
n
i=1 Wi

}
(A.29)

≤ 2x exp{−m(λ1)}E
{(
V 2
n − 1

)2
eλ1

∑n
i=1 Wi

}
,

and

E
∣∣W̃i{∆̃n − ∆̃(i)

n }
∣∣(A.30)

= exp{−m(λ1)}E
{∣∣Wi{∆n −∆(i)

n }
∣∣eλ1

∑n
i=1 Wi

}

≤ 2x exp{−m(λ1)}E
{
|Wi|

∣∣∣(V 2
n − 1)2 −

(∑

j 6=i

Zj

)2∣∣∣eλ1

∑n
i=1 Wi

}

= 2x exp{−m(λ1)}E
{
|Wi|

∣∣∣Z2
i +2Zi

∑

j 6=i

Zj

∣∣∣eλ1

∑n
i=1 Wi

}
.

The lemma below presents the bounds of (A.29) and (A.30) and the proof will be presented
in Section B.3.

LEMMA A.4. For x satisfying (2.6) and (2.7) and 1/4< λ1 < 3/4, there exists an abso-

lute constant A such that for x > 3,

E

{(
V 2
n − 1

)2
eλ1

∑
n
i=1 Wi

}
≤A1 exp{m(λ1)}x−2Rxe

A2Rx ,(A.31)

n∑

i=1

E

{∣∣Wi

∣∣
∣∣∣Z2

i +2Zi

∑

j 6=i

Zj

∣∣∣eλ1

∑n
i=1 Wi

}
≤A1 exp{m(λ1)}x−2Rxe

A2Rx .(A.32)

In general, assume 0< r < r0 < 1 for a constant r0. For a number ω > r0, there exist con-

stants A1 and A2 depending on r0 and ω such that

E

{(
V 2
n − 1

)2
e
∑n

i=1(2rxXi−ωrx2Y 2
i )
}

(A.33)

≤ A1Rx

x2
exp

{
(2r2 − ωr)x2 − 2ωr2x3

n∑

i=1

EXiY
2
i +

4

3
r3x3

n∑

i=1

EX3
i +A2Rx

}
.

Consequently, by assembling (A.27)–(A.32) and (A.12)–(A.14), it holds that

P2 ≤A exp{ARx} exp{m(λ1)− λ1mn}(L3,n + x−1Rx).(A.34)

Moreover, by observing that mn =m′(λ1) = x2+2xc and 1−Φ(2λ1x)≥Cx−1e−2λ2
1x

2

for
x > 2 and 1/4< λ1 < 3/4, we obtain

P2 ≤A exp{ARx} exp{m(λ1) + (2λ21 − λ1)x
2 − 2λ1xc}(A.35)

× [1−Φ(2λ1x)]{A4xL3,n +A5Rx},
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which combined with (A.26) yields

P(2xSn − x2V 2
n ≥ x2 +2xc− x∆n)

≤ exp{m(λ1) + (2λ21 − λ1)x
2 − 2λ1xc} [1−Φ(2λ1x)] e

ARx(1 +AxL3,n)

= exp
{
m(λ1) +

1

2
(x+ c)2 − λ1(x

2 +2xc)
}

× [1−Φ(x+ c)] eA3Rx(1 +A4xL3,n),

where the last equality is derived by a similar procedure to (A.23). Finally, we arrive at the
desired result (5.7) by using (A.24). The proof is completed.

A.4. Proof of Proposition 5.4. We use the truncation technique to estimate the error
term. Let B = 2500 ∨ 200c0. Here the constants 2500 and 200 are set large enough for sim-
plicity of proof, because we are not pursuing the best possible constants. The integrating
region can be partitioned into three parts as follows,

(A.36) P

(
Sn > xVn + c, |V 2

n − 1|>x−1(1∨ 6R1/2
x )

)
≤

3∑

i=1

P
(
(Sn, V

2
n ) ∈Ωi

)
,

where {Ωi, i= 1,2,3} are given by

Ω1 =
{
(u, v) ∈ (R,R+) : u > x

√
v+ c, 1 + x−1(1∨ 6R1/2

x )< v ≤B
}
,

Ω2 =
{
(u, v) ∈ (R,R+) : u > x

√
v+ c, v < 1− x−1(1∨ 6R1/2

x )
}
,

Ω3 =
{
(u, v) ∈ (R,R+) : u > x

√
v+ c, v > B

}
.

For the first part, we choose

r1 = x+ c, t1 =
2

5
x(x+ c).

By Chebyshev’s inequality we obtain

P
((
Sn, V

2
n

)
∈Ω1

)
(A.37)

≤ x2 exp
{
− inf

(u,v)∈Ω1

(r1u− t1v)
}
E

{(
V 2
n − 1

)2
er1Sn−t1V 2

n

}
.

Obviously,

inf
(u,v)∈Ω1

(r1u− t1v)(A.38)

= r1

(
c+ x

√
1 + x−1(1∨ 6R

1/2
x )

)
− t1

(
1 + x−1(1 ∨ 6R1/2

x )
)
.

It follows from applying (A.33) in Lemma A.4 with r = r1/(2x) and t= t1/x
2 (It is easy to

verify the conditions for (A.33) are satisfied when |c| ≤ x/5) that

E{
(
V 2
n − 1

)2
er1Sn−t1V 2

n }(A.39)

≤ A1Rx

x2
exp

{r21
2

− t1 +
r31
6

n∑

i=1

EX3
i − r1t1

n∑

i=1

E[XiY
2
i ] +A2Rx

}
.
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By plugging (A.38), (A.39) and the value of r1, t1 into (A.37), we arrive at

P((Sn, V
2
n ) ∈Ω1)(A.40)

≤A1RxΨ
∗
x exp

{
− (x+ c)2

2
+

2

5
γ2x3

n∑

i=1

E[XiY
2
i ]

− 2xγ(1 ∨ 6R1/2
x )

[(√
1 + x−1(1 ∨ 6R

1/2
x ) + 1

)−1 − 2

5

]
+A2Rx

}
,

where γ = (x+ c)/(2x). For x > 3 satisfying (2.6) with a small constant c1 ≤ 1
324 , it holds

that x−1(1∨ 6R
1/2
x )≤ 1/3. Note also that x3|E[XiY

2
i ]| ≤ 2

3x
3L3,n ≤ xR

1/2
x by Lemma A.2.

Hence

P((Sn, V
2
n ) ∈Ω1)

≤A3xRxΨ
∗
x

[
1−Φ(x+ c)

]
exp

{
0.4γ2xR1/2

x − 2xγ(1 ∨ 6R1/2
x ) · 0.06 +A2Rx

}
.

Furthermore, observe that 1∨ 6R
1/2
x ≥ 1/2 + 3R

1/2
x and 2/5≤ γ ≤ 3/5, therefore

P((Sn, V
2
n ) ∈Ω1)(A.41)

≤A3xRxΨ
∗
x

[
1−Φ(x+ c)

]
exp{−0.024x− 0.048xR1/2

x +A2Rx}
≤A4RxΨ

∗
x

[
1−Φ(x+ c)

]
eA2Rx .

As for the second error term, by choosing r2 = x+ c and t2 = 2x(x+ c), we have under
(2.6) that

(A.42) inf
(u,v)∈Ω2

(r2u− t2v) = r2

(
c+ x

√
1− x−1(1∨R1/2

x )
)
− t2

(
1− x−1(1∨R1/2

x )
)
.

In the same manner as the proof above, combining (A.37), (A.41) and (A.42) with r1, t1
replaced by r2, t2, we obtain

P
((
Sn, V

2
n

)
∈Ω2

)
(A.43)

≤A1xRx [1−Φ(x+ c)]Ψ∗
x

× exp
{
− x

2
∨ 3xR1/2

x − 6γ2x3
n∑

i=1

EXiY
2
i +A2Rx

}

≤A1Rx[1−Φ(x+ c)]Ψ∗
xe

A2Rx .

Next we deal with P
((
Sn, V

2
n

)
∈Ω3

)
. Recall the notations

X̂i =Xi1(|(1 + x)Xi| ≤ 1), Ŝn =

n∑

i=1

X̂i,

Ŷi = Yi1(|(1 + x)Yi| ≤ 1), V̂ 2
n =

n∑

i=1

Ŷ 2
i .

We also denote

X̄i =Xi1(|(1 + x)Xi|> 1), S̄n =

n∑

i=1

X̄i,
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Ȳi = Yi1(|(1 + x)Yi|> 1), V̄ 2
n =

n∑

i=1

Ȳ 2
i .

It is evident that

P
((
Sn, V

2
n

)
∈Ω3

)

≤P

(
Ŝn >

xVn + c

10
, Vn >

√
B

)
+ P

(
S̄n >

9 (xVn + c)

10
, Vn >

√
B

)

≤K1 +K2 +K3,

where

K1 = P

(
Ŝn >

√
B

10
x+

c

10
, V̂ 2

n >
B

2

)
,

K2 = P

(
Ŝn >

√
B

10
x+

c

10
, V̄ 2

n >
B

2

)
,

K3 = P

(
S̄n >

9 (xVn + c)

10
, Vn >

√
B

)
.

By Chebyshev’s inequality and recalling that B =max{2500,200c0} we have

(A.44) K1 ≤
1

(
B
2 − 1

)2 exp
{
−3

2
x2 − 1

20
xc

}
E

[(
V̂ 2
n − 1

)2
e

xŜn
2

]
.

Let Ẑi = Ŷ 2
i −EŶ 2

i , then it holds that

E

[(
V̂ 2
n − 1

)2
e

xŜn
2

]
(A.45)

= E



(

n∑

i=1

Ẑi −
n∑

i=1

EȲ 2
i

)2

e
xŜn
2




≤ 2E



(

n∑

i=1

Ẑi

)2

e
xŜn
2


+2E



(

n∑

i=1

EȲ 2
i

)2

e
xŜn
2




≤ 2E



(

n∑

i=1

Ẑi

)2

e
xŜn
2


+2E


x−4

(
n∑

i=1

Ex3Ȳ 3
i

)2

e
xŜn
2




≤ 2

n∑

i=1

EẐ2
i e

xX̂i
2

Ee
xX̂i
2

n∏

j=1

Ee
xX̂j

2 +2x−4R2
x

n∏

i=1

Ee
xX̂j

2

+4
∑

i 6=j

EẐie
xX̂i
2

Ee
xX̂i
2

EẐje
xX̂j

2

Ee
xX̂j

2

n∏

j=1

Ee
xX̂j

2 .

Furthermore, by Taylor expansion and the same argument used in Lemma A.1, we can obtain

Ee
xX̂j

2 = exp
{1
8
x2EX2

i +
1

48
x3EX3

i +O1δx,i

}
,(A.46)
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EẐie
xX̂j

2 =O
(
x
(
E|Xi|3 + E|Yi|3

))
+O

(
x−2δx,i

)
,(A.47)

EẐ2
i e

xX̂j

2 =O
(
x−4δx,i

)
, and EȲ 2

i e
xX̂j

2 =O
(
x−2δx,i

)
.(A.48)

By plugging (A.46)−(A.48) into (A.45), and the fact that x4L2
3,n ≤ 4δx, it is readily seen that

(A.49) E

[(
V̂ 2
n − 1

)2
e

xŜn
2

]
≤ ARx

x2
exp

{
1

8
x2 +

1

48
x3

n∑

i=1

EX3
i +A1Rx

}
.

Substituting (A.49) into (A.44) yields for |c| ≤ x/5,

K1 ≤C1x
−2Rx exp

{
− 11

8
x2 − xc

20
+

1

48
x3

n∑

i=1

EX3
i +A1Rx

}
(A.50)

≤C2x
−2Rx exp

{
−(x+ c)2

2
− 1

4
x2 +A1Rx

}

≤C3 [1−Φ(x+ c)]Rx exp

{
−1

8
x2 +A1Rx

}

≤C4Rx [1−Φ(x+ c)]Ψ∗
xe

A1Rx ,

and the last inequality holds because x satisfies (2.6) and

∣∣x3
n∑

i=1

EX3
i

∣∣≤ x3L3,n, and
∣∣x3

n∑

i=1

EXiY
2
i

∣∣≤ x3L3,n.

Similarly, exploiting the upper bounds (A.46) and (A.48), we have

(A.51) K2 <
2

B
exp

{
−3

2
x2 − xc

20

}
E

(
V̄ 2
n e

xŜn
2

)
,

and

E

(
V̄ 2
n e

xŜn
2

)
=

n∑

i=1

E

(
Ȳ 2
i e

xX̂i
2

)

Ee
xX̂i
2

n∏

j=1

Ee
xX̂j

2

≤ ARx

x2
exp

{
1

8
x2 +

1

48
x3

n∑

i=1

EX3
i +A1Rx

}
.

Hence, in the same manner as the proof of (A.50), it follows that

(A.52) K2 ≤ARx [1−Φ(x+ c)]Ψ∗
xe

A1Rx .

Finally, as for the bound for K3, denote

X̄
(1)
i = X̄i1

(
2xXi ≤

X2
i

Y 2
i + c0EY

2
i

)
:= X̄i1(M), and X̄

(2)
i = X̄i − X̄

(1)
i .

Cauchy inequality leads to

K3 = P

( n∑

i=1

X̄i >
9 (xVn + c)

10
, Vn >

√
B
)

≤ P

( n∑

i=1

X̄
(1)
i >

(xVn + c)

100
, Vn >

√
B
)
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+ P

( n∑

i=1

X̄
(2)
i >

89 (xVn + c)

100
, Vn >

√
B
)

≤ P

( n∑

i=1

2xX̄
(1)
i >

(
x2Vn + cx

)

50
, Vn >

√
B
)
,

+ P

(√√√√
n∑

i=1

(X̄
(2)
i )2

Y 2
i + c0EY 2

i

>
89

100

xVn + c√
V 2
n + c0

, Vn >
√
B

)

:=K4 +K5.

Recalling that B =max{2500,200c0}. we further have for |c| ≤ x/5

K4 ≤ P

(
n∑

i=1

2xX̄
(1)
i > 0.996x2

)
(A.53)

≤ C1x
−2

exp{0.986x2}E
[

n∑

i=1

2xX̄
(1)
i e0.99

∑
n
i=1 2xX̄

(1)
i

]

≤ C2x
−2

exp{0.986x2}
n∑

i=1

E

[
e2xX̄

(1)
i
1

(
|(1 + x)Xi|> 1,M

)]∏

j 6=i

Ee2xX̄
(1)
j

≤ARx [1−Φ(x+ c)]Ψ∗
x exp{Rx},

K5 ≤ P

(
n∑

i=1

(X̄
(2)
i )2

Y 2
i + c0EY 2

i

> (0.884x)2

)

≤ C1x
−2

exp{0.773x2}E
[

n∑

i=1

(X̄
(2)
i )2

Y 2
i + c0EY 2

i

e
0.99

∑n
i=1

(X̄
(2)
i

)2

Y 2
i

+c0EY
2
i

]

≤ C2x
−2

exp{0.773x2}
n∑

i=1

E

[
e

(X̄
(2)
i

)2

Y 2
i

+c0EY
2
i
1

(
|x′Xi|> 1,Mc

)]∏

j 6=i

Ee
(X̄

(2)
i

)2

Y 2
j

+c0EY
2
j

≤ARx [1−Φ(x+ c)]Ψ∗
x exp{Rx},

where we have used the condition xL3,n ≤ c1, for c1 being some small enough constant, and
that ∏

j 6=i

Ee2xX̄
(1)
i ≤

∏

j 6=i

{
1 + Ee2xX̄

(1)
i
1(|x′Xi|> 1,M)

}

≤ exp

{
n∑

i=1

Ee2xX̄
(1)
i
1(|x′Xi|> 1,M)

}

≤ exp{rx} ≤ exp{Rx},
∏

j 6=i

Ee
(X̄

(2)
i

)2

Y 2
j

+c0EY
2
j ≤

∏

j 6=i

{
1 +Ee

X2
i

Y 2
i

+c0EY
2
i
1(|x′Xi|> 1,Mc)

}

≤ exp

{
n∑

i=1

Ee
X2

i
Y 2
i

+c0EY
2
i
1(|x′Xi|> 1,Mc)

}
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≤ exp{rx} ≤ exp{Rx},

Rx ≥ rx =

n∑

i=1

E

[
e2xX̄

(1)
i
1

(
|x′Xi|> 1,M

)]

+

n∑

i=1

E

[
e

(X̄
(2)
i

)2

Y 2
i

+c0EY
2
i
1

(
|x′Xi|> 1,Mc

)]
.

Therefore by (A.50), (A.52) and (A.53), we conclude

(A.54) P
((
Sn, V

2
n

)
∈Ω3

)
≤ARx [1−Φ(x+ c)]Ψ∗

xe
A1Rx .

Consequently, the desired bound (5.8) follows from (A.40), (A.43) and (A.54). The proof is
completed.

A.5. Proof of Proposition 5.5. The main idea is to apply the general Theorem 2.1. Re-
call the notation in (5.11), based on the one-dependent structure, {(Xj , Yj)}kj=1 is a sequence
of independent random vectors. Further, the moment condition in Theorem 3.1 indicates

1

2

(
ES2

n1

EV 2
n1

− 1
)
= ρn +O

( a2
nα
)
.

Hence

P
(
Sn1 ≥ xVn1 + d1n

−α/2xBn

)

= P

(
Sn1

(ES2
n1)

1/2
>
x
(
1 +O(a2n−α)

)
√
1 + 2ρn

Vn1

(EV 2
n1)

1/2
+O

(
d1n

−α/2x
)
)
.

(A.55)

We now focus on bounding the error terms involved in Theorem 2.1. Note that {ξi}1≤i≤n are
one-dependent sequence of random variables, and Rosenthal’s inequality yields for 2< p≤
4,

E|Xi|p = E

[∣∣∣
∑

j∈Hi,odd

ξj +
∑

j∈Hi,even

ξj

∣∣∣
p]

≤ 2p
{
E

[∣∣∣
∑

j∈Hi,odd

ξj

∣∣∣
p]

+E

[∣∣∣
∑

j∈Hi,even

ξj

∣∣∣
p]}

≤A

[( ∑

j∈Hi,odd

Eξ2j

)p/2
+
( ∑

j∈Hi,even

Eξ2j

)p/2
+
∑

j∈Hi

E|ξj|p
]

≤Aap1n
pα/2.

In addition,

E|Yi|p ≤
(
E|Yi|4

) p

4 ≤
[
k
∑

j∈Hi

Eξ4j

] p

4 ≤Aap1n
pα

2 , B2
n1 :=

k∑

j=1

EY 2
i ≥Aa22n,

∣∣∣
k∑

j=1

EXjY
2
j

∣∣∣+
∣∣∣

k∑

i=1

EX3
i

∣∣∣≤ 7

k∑

i=1

∑

j∈Hi

∣∣Eξ3j
∣∣≤Aa31n.

Hence

L3,n ≤Aa3n−
1−α

2 , δx ≤Aa4
(1 + x)4

n(1−α)
, Ψ∗

x ≤ exp
(
Aa3x3n−1/2

)
.
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Thefore, applying Theorem 2.1 to (A.55) yields

P
(
Sn1 ≥ xVn1 + d1n

−α/2xBn

)
(A.56)

=
[
1−Φ(

x√
1 + 2ρn

)
]
eO1

∑
rx,j

(
1 +O2

( a4x4
n1−α

+
a2x2

n
α

2

+
a3x

n
1−α

2

))

for x∈ (2, a−1min{nα/4, n(1−α)/4}), where

rx,j ≤ E

[
exp

{
(
∑

i∈Hj
ξi)

2

∑
i∈Hj

(ξ2i + c0Eξ2i )

}
1

(
x
∣∣∣
∑

i∈Hj

ξi

∣∣∣> c(ρ)a2n
1/2
)]
,

for some pre-assigned constant c0 > 0 and constant c(ρ). The derivation of the upper bound
of rx,j is rather complicated. We exploit a technical lemma A.5 whose proof will be provided
in Section B.4 to bound rx,j .

LEMMA A.5. Let {Xi}1≤i≤n be a sequence of independent random variables with

EXi = 0 and E|Xi|p <∞ for p > 2. Denote Sn =
∑n

i=1Xi, V
2
n =

∑n
i=1X

2
i andB2

n = EV 2
n .

Assume b > 0,A > 0. Then there exist positive constants c0 and K depending on p and A,

such that

(A.57) E

[
e

AS2
n

V 2
n+c0B2

n
1(b|Sn|> 1)

]
≤Kbp

( n∑

i=1

E|Xi|p + (ES2
n)

p

2

)
.

Since {ξi}1≤i≤n are one-dependent and Lemma A.5 is built for independent random vari-
ables, we separate the odd-indexed terms and the even-indexed terms to apply Lemma A.5.
Specifically,

rx,j ≤ E

[
exp

{ 4|∑i∈Hj ,odd
ξi|2∑

i∈Hj ,odd
(ξ2i + c0Eξ2i )

}
1

(∣∣∣
∑

i∈Hj ,odd

ξi

∣∣∣> c(ρ)a2n
1/2

2x

)]
(A.58)

+E

[
exp

{ 4|∑i∈Hj ,even
ξi|2∑

i∈Hj ,even
(ξ2i + c0Eξ2i )

}
1

(∣∣∣
∑

i∈Hj ,even

ξi

∣∣∣> c(ρ)a2n
1/2

2x

)]

≤C(ρ)
x4

a42n
2

[ ∑

i∈Hj

E|ξi|4 + (
∑

i∈Hj ,odd

Eξ2i )
2 + (

∑

i∈Hj ,even

Eξ2i )
2
]

≤C(ρ)
a4x4

n2−2α
,

where the second inequality is derived by applying Lemma A.5. Therefore, rx =
∑k

j=1 rx,j ≤
C(ρ)a4x4/n1−α, which together with (A.56) yields the desired result (5.17).

In the same manner as the proof of (A.40), using Chebyshev’s inequality and Taylor ex-
pansion, it is easy to obtain (5.18). To avoid redundancy, here we omit the proof.

A.6. Proof of Proposition 5.6. We start with the error bound (5.19). Denote ωj =

ξ̂j(l+1) − Eξ̂j(l+1) for 1 ≤ j ≤ k. Therefore, {ωj}1≤j≤k are independent random variables
with ωj ≤ 2τ and Eωj = 0 for each j. Recalling the definitions in (5.12) and τ =Bn2/x. For
d1 = κρa

2 with κρ ≥ 10, routine calculation shows

k∑

j=1

Eω2
j ≤B2

n2 ≤ a21n
1−α, d1n

−α/2xBn −
k∑

j=1

Eξ̂j(l+1) ≥ (κρ − 1)a1xn
1−α

2 .
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Hence, it follows from Bernstein inequality (see for example, Theorem A in Fan, Grama and Liu
(2015)) that

P
(
Ŝn2 > d1n

−α/2xBn

)
≤ P

( k∑

j=1

ωj ≥ (κρ − 1)a1xn
(1−α)/2

)

≤ exp
(
−

κ2ρa
2
1x

2n1−α

3B2
n2 + 3τκρa1xn

(1−α)

2

)
≤ exp

(
− κρx

2

6

)
.

As for inequality (5.20), similarly,

P

(
Ŝn2 <−d1n−α/2xBn + x(V̂n − Vn1), V

2
n1 >

1

4
B2

n

)

=P

( k∑

j=1

ξ̂j(l+1) <−d1n−α/2xBn + x

∑k
j=1 ξ̂

2
j(l+1)

V̂n + Vn1
, V 2

n1 >
1

4
B2

n

)

≤P

( k∑

j=1

(
γj − Eγj

)
> d1n

−α/2xBn −
k∑

j=1

Eγj

)
,

where γj = x
Bn
ξ̂2j(l+1) − ξ̂j(l+1), 1 ≤ j ≤ k, are independent random variables with γj −

Eγj ≤ 4τ for each j. Note that

k∑

j=1

E(γj − Eγj)
2 ≤

k∑

j=1

Eγ2j ≤ 2

k∑

j=1

(x2τ2
B2

n

+1
)
Eξ̂2j(l+1) ≤ 4a21n

1−α,

∣∣∣
k∑

j=1

Eγj

∣∣∣=
∣∣∣ x
Bn

k∑

j=1

Eξ̂2j(l+1) +

k∑

j=1

Eξj(l+1)1(|ξj(l+1)|> τ)
∣∣∣

≤ 1

τ

k∑

j=1

Eξ2j(l+1) = xBn2.

Again, Bernstein inequality leads to

P

(
Ŝn2 <−d1n−α/2xBn + x(V̂n − Vn1), V

2
n1 >

1

4
B2

n

)
≤ exp

(
− κρx

2

14

)
.

The proof is completed.

A.7. Proof of Proposition 5.7. Observe that for any a, b, δ2 ∈R satisfying 3b≥ a2 and
δ2 ≥ 0, we have for arbitrary x2 ≥ 3,

x
√
b+ δ2 ≥

√
x2
(a2
3

+ δ2

)
=

√
(x2 − 3)

a2

3
+ (x2 − 3)δ2 + a2 + 3δ2

≥
√

(x2 − 3)δ2 + a2 + 2a
√
δ2(x2 − 3)≥ a+

√
(x2 − 3)δ2.

Denote H = {j(ℓ+ 1) : 1≤ j ≤ k}, the index set of small block terms. We set

a := ξ̂j(ℓ+1) + ξj(ℓ+1)−1 + ξj(ℓ+1)+1, Ŝ(j)
n := Ŝn − a,

b := ξ̂2j(ℓ+1) + ξ2j(ℓ+1)−1 + ξ2j(ℓ+1)+1, δ2 :=
(
V̂ (j)
n

)2
= V̂ 2

n − b,
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then {Ŝn >xV̂n} ⊂ {Ŝ(j)
n > (

√
x2 − 3)V̂

(j)
n } by the above analysis. Moreover, Ŝ(j)

n and V̂ (j)
n

are independent of ξj(l+1) since {ξi,1≤ i≤ n} are one-dependent random variables. Thus it
follows from (5.22) that for x ∈ (cρ

√
logn,d0a

−1n1/8),

P

(
Ŝn ≥ xV̂n, max

1≤j≤k
|ξj(l+1)|> τ

)
(A.59)

≤
∑

i∈H
P

(
Ŝ(i)
n ≥

√
x2 − 3V̂ (i)

n

)
P
(
|ξi|> τ

)

≤A

∑
i∈H E|ξi|4
τ4

[
1−Φ

( √
x2 − 3√
1 + 2ρ

(i)
n

)](
1 +O(

a4x2

n1/4
)
)

≤Aa4
(1 + x)4

n1/2

[
1−Φ

( √
x2 − 3√
1 + 2ρn

)](
1 +O(

a4x2

n1/4
)
)

≤Ae3/2(1−2ρ)a4
(1 + x)4

n1/2

[
1−Φ

( x√
1 + 2ρn

)](
1 +O(

a4x2

n1/4
)
)
.

where ρ(i)n is defined parallel to ρn and

ρ(i)n :=
1

2

(
E[(Ŝ

(i)
n )2]

E[(V̂
(i)
n )2]

− 1
)
= ρn

(
1 +O

(a2
n

))

because Eξ4i ≤ a41 and Eξ2i ≥ a22 for i≥ 1. Then (5.23) is derived.
Regarding the proof of (5.24), a more technical iterative argument will be exploited. We

have

P

(
Sn ≥ xVn, max

1≤j≤k
|ξj(l+1)|> τ

)

≤
∑

i1∈H
P

(
S(i1)
n ≥

√
x2 − 3V (i1)

n

)
P
(
|ξi1 |> τ

)

≤
∑

i1∈H
A
a4(1 + x)4

n
P

(
S(i1)
n ≥

√
x2 − 3V (i1)

n

)

≤
∑

i1∈H
A
a4(1 + x)4

n

[
P

(
Ŝ(i1)
n ≥

√
x2 − 3V̂ (i1)

n

)

+ P

(
S(i1)
n ≥

√
x2 − 3V (i1)

n , max
j∈H\{i1}

|ξj(l+1)|> τ
)]

≤
∑

i1∈H
A
a4(1 + x)4

n

[
P

(
Ŝ(i1)
n ≥

√
x2 − 3V̂ (i1)

n

)

+
∑

i2∈H\{i1}
P

(
S(i1,i2)
n ≥

√
x2 − 6V (i1,i2)

n

)
P
(
|ξi2 |> τ

)]

≤
∑

i1∈H
A
a4(1 + x)4

n
P

(
Ŝ(i1)
n ≥

√
x2 − 3V̂ (i1)

n

)

+
∑

i1∈H

∑

i2∈H\{i1}

(
A
a4(1 + x)4

n

)2
P

(
S(i1,i2)
n ≥

√
x2 − 6V (i1,i2)

n

)
.(A.60)



REFINED GENERAL SELF-NORMALIZED MODERATE DEVIATION 17

Put u= [x
2

6 ] so that
√
x2 − 3u≈ x/

√
2 and we repeat the above procedure iteratively up to

u times,

P

(
Sn ≥ xVn, max

1≤j≤k
|ξj(l+1)|> τ

)

≤
u−1∑

j=1

∑

i1∈H
· · ·
∑

ij∈H

(
A
a4(1 + x)4

n

)j
P

(
Ŝ(i1,...,ij)
n ≥

√
x2 − 3jV̂ (i1,...,ij)

n

)

+
∑

i1∈H
· · ·
∑

iu∈H

(
A
a4(1 + x)4

n

)u
P

(
S(i1,...,iu)
n ≥

√
x2 − 3uV (i1,...,iu)

n

)
.

As we have chosen α= 1/2 and |H|= k ≍ n1−α =
√
n, it follows by (5.22) that for arbitrary

i1, · · · , ij ∈H , and 1≤ j ≤ x2/6, we have for x ∈ (cρ
√
logn,d0a

−2n1/8),

∑

i1∈H
· · ·
∑

ij∈H

(
A
a4(1 + x)4

n

)j
P

(
Ŝ(i1,...,ij)
n ≥

√
x2 − 3jV̂ (i1,...,ij)

n

)

≤
(
A
a4(1 + x)4

n1/2

)j[
1−Φ

( √
x2 − 3j√

1 + 2ρ
(i1,··· ,ij)
n

)](
1 +O

(a4x2
n1/4

))

≤A
(
A
a4(1 + x)4

n1/2

)j
e3j/(2+4ρn)

[
1−Φ

( x√
1 + 2ρn

)](
1 +O

(a4x2
n1/4

))

≤A
a4(1 + x)4

n1/2

(
A
a4(1 + x)4

n1/2
e3/(2+4ρn)

)j−1
[
1−Φ

( x√
1 + 2ρn

)]

≤A
a4(1 + x)4

n1/2
·
(1
2

)j−1
[
1−Φ

( x√
1 + 2ρn

)]

for sufficiently large n and some constant A′′ depending on a, ρ, where ρ(i1,··· ,ij)n is defined
as

ρ(i1,··· ,ij)n :=
1

2

(
E[(Ŝ

(i1,...,ij)
n )2]

E[(V̂
(i1,...,ij)
n )2]

− 1
)
= ρn

(
1 +O

(a2x2
n

))

Therefore, by combining the upper bounds above we conclude

P

(
Sn ≥ xVn, max

1≤j≤k
|ξj(l+1)|> τ

)

≤
u−1∑

j=1

A
a4(1 + x)4

n1/2
·
(1
2

)j−1
[
1−Φ

( x√
1 + 2ρn

)]
+
(
A
a4(1 + x)4

n1/2

)u

≤A1
a4x4

n1/2

[
1−Φ

( x√
1 + 2ρn

)](
1 +

(
A
a4(1 + x)4

n1/2
e3/(1+2ρn)

)x2/3)

≤A2
a4x4

n1/2

[
1−Φ

( x√
1 + 2ρn

)]

for x∈ (cρ
√
logn,d0a

−2n1/8). The proof is completed.

A.8. Proof of Proposition 5.8. We apply Theorem 2.1 to estimate P(Sk,1 ≥ xVk,1 −
εxBn). As a preparation, we first calculate the relevant moments. By Lemma 5.1, there exist
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some positive constants A1,A2 depending on a1, a2 and τ such that for 1≤ u≤ k1,

(A.61) Eξ4u +Eη4u ≤A1n
2(α+α1)µ41, E|ξu|3 +E|ηu|3 ≤A2n

3

2
(α+α1)µ31.

In addition, by Lemma 5.2 and some routine calculations we can obtain

|Eξ3u| ≤A3n
(α+α1)c31, |Eξuη2u| ≤A3n

(α+α1)c31,(A.62)

for a positive constant A3 depending on a1, a2 and τ . To apply the moderate deviation theo-
rem for general self-normalized sums, it remains to estimate the error term

rx,u := E

[
exp

( ξ2u
η2u + c0Eη2u

)
1

(1 + x

Bn,1
|ξu|> 1

)]
.

We split the block Iu into odd-indexed terms and even-indexed terms to construct a weakly
dependent structure so that Lemma 5.3 can be applied. To be specific, let J1 = {j : j is odd}
and J2 = {j : j is even}. Correspondingly, we define for t= 1,2

Gt :=
∑

j∈Iu∩Jt

Yj, K2
t :=

∑

j∈Iu∩Jt

(
Y 2
j + c0EY

2
j

)
.

In the same manner as (A.58), we have

rx,u ≤
2∑

t=1

E

[
exp

(4G2
t

K2
t

)
1

((1 + x)|Gt|
Bn,1

>
1

v

)]
:=

2∑

t=1

rx,u,t.(A.63)

As {rx,u,t, t = 1,2} share the same bound, we only present the analysis of rx,u,1. Suppose
the cardinality of Iu ∩ J1 is [nα1/2] for simplicity. By Lemma 5.3, {Yj, j ∈ Iu ∩ J1} can
be approximated by a sequence of independent random variables {Y ∗

j ,1 ≤ j ≤ [nα1/2]}.
Denote

G∗
1 =

[nα1/2]∑

j=1

Y ∗
j , (K∗

1)
2 =

[nα1/2]∑

j=1

(
(Y ∗

j )
2 + c0E(Y

∗
j )

2
)
.

It follows from Lemmas A.5 and 5.3 that

rx,u,1 ≤ E

[
exp

(4(G∗
1 )

2

(K∗
1)

2

)
1

((1 + x)|G∗
1 |

Bn,1
>

1

2

)]
(A.64)

+E

[
exp

(4G2
1

K2
1

)
1

((1 + x)|G1|
Bn,1

>
1

2

)
1

(
∃j : Yj 6= Y ∗

j

)]

≤ E

[
exp

(4(G∗
1 )

2

(K∗
1)

2

)
1

((1 + x)|G∗
1 |

Bn,1
>

1

2

)]
+
a1n

α1

2
e4n

α1−a2nατ

≤ C(1 + x)4

n2(1−α−α1)
+
a1n

α1

2
e4n

α1−a2nατ

,

where α1 should be chosen such that α1 ≤ ατ . Therefore, by Theorem 2.1 and plugging in
the bounds given in (5.27), (A.61), (A.62) and (A.64), we can obtain there exist a constant c0
depending on d1, µ1/µ2, a1, a2, α and τ such that when ǫ= d1n

−α1/2 logn,

P
(
Sk,1 ≥ xVk,1 ± εxBn

)/[
1−Φ(x)

]
(A.65)

=1+O

(
(1 + x)4

n1−α−α1
+

1+ x

n(1−α−α1)/2
+

(1 + x)2

nα
+

(1+ x)2 logn

nα1/2

)

uniformly for x ∈ (0, c0min{n(1−α−α1)/4, nατ/2, nα/2, (logn)−1/2nα1/4}). The proof of
Proposition 5.8 is completed.
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A.9. Proof of Proposition 5.9. Note that limℓ→−∞E(Xi|Fℓ) belongs to the tail σ-field,
hence limℓ→−∞E(Xi|Fℓ) = E(Xi) = 0 by the zero-one law. Therefore, we may write Xi as

Xi =

∞∑

u=0

Pi−uXi, where Pi−u(·) = E(·|Fi−u)−E(·|Fi−u−1).

Observe that,

‖ Yj ‖4=
∥∥∥

∞∑

u=0

∑

i∈Hj

Pi−uXi

∥∥∥
4
≤

∞∑

u=0

∥∥∥
∑

i∈Hj

Pi−uXi

∥∥∥
4
.

For fixed u≥ 0, denote Zi =Pi−uXi and Ai =Fi−u. It is obvious that Zi ∈Ai and Ai−1 ⊂
Ai for any i≥ 1. Moreover,

E(Zi|Ai−1) = E(Xi|Ai−1)− E(Xi|Ai−1) = 0,

thus for any fixed u ≥ 0, {(Zi,Ai), i≥ 1} is a martingale difference sequence. It follows
from Burkholder’s martingale inequality that

E

[∣∣∣
∑

i∈Hj

Zi

∣∣∣
4]

≤CE

[∣∣∣
∑

i∈Hj

Z2
i

∣∣∣
2]

≤Cm
∑

i∈Hj

E(Z4
i ).

In addition, by conditional Jensen’s inequality and recalling the definition in (3.17), we obtain

E(Z4
i ) = E

[∣∣∣E
(
Xi

∣∣Fi−u

)
− E

(
Xi

∣∣Fi−u−1

)∣∣∣
4]

= E

{∣∣∣E
[
Xi −Gi

(
. . . , εi−u−1, ǫ

∗
i−u, εi−u+1, . . . , εi

)∣∣Fi−u

]∣∣∣
4}

≤ E
[(
Xi −Gi

(
. . . , εi−u−1, ǫ

∗
i−u, εi−u+1, . . . , εi

))4]
=
[
θ4(u)

]4
.

Thus, we obtain by condition (3.16) and Remark 3.2 that

‖ Yj ‖4 ≤
∞∑

u=0

∥∥∥
∑

i∈Hj

Zi

∥∥∥
4
≤C

∞∑

u=0

m1/2a′1e
−a′

2u
τ ≤C1m

1/2

for C1 being a constant depending on a1, a2 and τ . Further, it follows from Minkowski’s
inequality and (5.38) that for sufficiently large n,

‖ Ỹj ‖4≤‖ Yj ‖4 + ‖ Ỹj − Yj ‖4≤C1m
1/2 +ma1e

−a2mτ ≤ C̃1m
1/2,(A.66)

‖ Ỹj ‖2≥‖ Yj ‖2 − ‖ Ỹj − Yj ‖2≥ c1m
1/2 −ma1e

−a2mτ ≥ C̃2m
1/2,(A.67)

where C̃1 and C̃2 = ω1 − n
α

2 a1e
−a2nατ

> ω1/2 are constants depending on τ,α,ω1, a1 and
a2.

Denote ρk =
(∑k−1

j=1 E(Ỹj Ỹj+1)
)/(∑k

j=1E(Ỹ
2
j )
)
. Note that

C̃2
2 · n= C̃2

2 · km≤
k∑

i=1

E(Ỹ 2
i )≤ C̃2

1 · km= C̃2
1 · n,

and
∣∣∣∣
k−1∑

j=1

E

(
ỸjỸj+1

)
−

k−1∑

j=1

E

(
YjYj+1

)∣∣∣∣
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≤
k−1∑

j=1

∣∣∣∣E
[
Yj

(
Ỹj+1 − Yj+1

)]
+ E

[
Yj+1

(
Ỹj − Yj

)]

+E

[(
Ỹj − Yj

)(
Ỹj+1 − Yj+1

)]∣∣∣∣

≤
k−1∑

j=1

(∥∥Yj
∥∥
2
·
∥∥Ỹj+1 − Yj+1

∥∥
2
+
∥∥Yj+1

∥∥
2
·
∥∥Ỹj − Yj

∥∥
2

+
∥∥Ỹj − Yj

∥∥
2
·
∥∥Ỹj+1 − Yj+1

∥∥
2

)

≤ k
(
2C̃1m

1/2 ·ma1e−a2mτ

+m2a21e
−2a2mτ

)
.

Immediately we have

(A.68)

∣∣∣∣
k−1∑

i=1

E(ỸiỸi+1)−
k−1∑

i=1

E(YiYi+1)

∣∣∣∣
/( k∑

i=1

E(Ỹ 2
i )

)
≤C3e

−C4a2mτ

,

with constantsC3 andC4 depending on τ,α,ω1, a1 and a2. Now, for further investigation into
the ratio of

∑k−1
j=1 E(YjYj+1) against

∑k−1
j=1 E(Ỹ

2
i ), we make use of the martingale structure

again by representing Yj and Yj+1 as

Yj =
∑

i∈Hj

∞∑

u=0

Pi−uXi, Yj+1 =
∑

i∈Hj+1

∞∑

u=0

Pi−uXi.

Thus

E(YjYj+1) =
∑

i1∈Hj

∑

i2∈Hj+1

∞∑

u1=0

∞∑

u2=0

E

[(
Pi1−u1

Xi1

)
·
(
Pi2−u2

Xi2

)]
.

Note that Pi2−u2
Xi2 ∈ Fi2−u2

and for any ℓ1 < i1 − u1, ℓ2 < i2 − u2,

E

[
Pi1−u1

Xi1

∣∣Fℓ1

]
= 0, E

[
Pi2−u2

Xi2

∣∣Fℓ2

]
= 0.

Therefore, for i1 − u1 6= i2 − u2, we have E [(Pi1−u1
Xi1) · (Pi2−u2

Xi2)] = 0. Consequently,

∣∣E(YjYj+1)
∣∣=
∣∣∣∣
∑

i1∈Hj

∑

i2∈Hj+1

∞∑

u1=0

E

[(
Pi1−u1

Xi1

)
·
(
Pi1−u1

Xi2

)]∣∣∣∣

≤
∑

i1∈Hj

∑

i2∈Hj+1

+∞∑

u1=0

4a′21 · exp
[
− a′2

(
uτ1 + (i2 − i1 + u1)

τ
)]
,

where we have used the fact that ‖Pi1−u1
Xi1‖2 ≤ θ4(u1) and ‖Pi1−u1

Xi2‖2 ≤ θ4(i2 − i1 +
u1).

It is trivial to see from the integrability of the function e−axτ

that

∑

i1∈Hj

∑

i2∈Hj+1

∞∑

u1=0

4a′21 · exp
[
− a′2

(
uτ1 + (i2 − i1 + u1)

τ
)]

(A.69)

≤
∞∑

u=0

2m∑

ℓ=1

ℓ · exp
[
− a′2

(
uτ + (ℓ+ u)τ

)]
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≤
(

2m∑

ℓ=1

ℓe−a′
2ℓ

τ

)( ∞∑

u=0

e−a′
2u

τ

)
≤C5,

for some constant C5 depending on α,a1, a2 and τ . Finally, as a result of (A.67), (A.68) and
(A.69), we obtain

(A.70) |ρk| :=
∣∣∣∣
k−1∑

i=1

E(ỸiỸi+1)

∣∣∣∣
/( k∑

i=1

E(Ỹ 2
i )

)
≤C6m

−1

for large enough n, where C6 is a constant depending on τ,α,ω1, a1 and a2.
Now we are ready to apply Theorem 3.1 to the self-normalized sum

T̃k =

∑k
j=1 Ỹj

(
∑k

j=1 Ỹ
2
j )

1/2
.

Notice that {Ỹj}1≤j≤k are one-dependent random variables and the bounds in (A.66), (A.67)
and (A.70), i.e., the conditions in Theorem 3.1, are satisfied. Recall that m= [nα] and k =
[n1−α]. We obtain by (3.2) that there is a constant d0 depending on τ,α,ω1, a1 and a2, such
that

P(T̃k ≥ x) =

[
1−Φ

(
x√

1 +O(m−1)

)](
1 +O

( 1 + x2

n(1−α)/4

))

=
[
1−Φ(x)

](
1 +O

( 1 + x2

n(1−α)/4
+

1+ x2

nα

))
,

uniformly for x ∈ (0, d0min{n(1−α)/8, nα/2}). This completes the proof of Proposition 5.9.

A.10. Proof of Proposition 5.10. For simplicity, we denote V 2
k =

∑k
j=1Y

2
j and Ṽ 2

k =
∑k

j=1 Ỹ
2
j . Recall the constant C̃2 in the lower bound shown in (A.67). Set

B =

{
max
1≤j≤k

∣∣Yi − Ỹi
∣∣≤ 1

n2
, Ṽ 2

k ≥ C̃2
2

2
· n
}
.

Within the set B, it holds that

|Vk − Ṽk| ≤ Ṽ −1
k |V 2

k − Ṽ 2
k | ≤ n−2Ṽ −1

k

k∑

j=1

(2|Ỹj |+ n−2)

≤ 2n−2k1/2 +
√
2C̃−1

2 n−7/2−α ≤ (2C̃−1
2 +2)n−

3

2
−α

2 ,

hence when n is sufficiently large,

∣∣Tk − T̃k
∣∣=

∣∣∣
(∑k

j=1 Yj

)
Ṽk −

(∑k
j=1 Ỹj

)
Vk

∣∣∣
VkṼk

≤
∑k

j=1

∣∣Yj − Ỹj
∣∣

Vk
+

(∑k
j=1

∣∣Ỹj
∣∣
)

Ṽk
·
∣∣Vk − Ṽk

∣∣
Vk

≤C
(
n−1/2kn−2 + k1/2n−1/2n−

3

2
−α

2

)

≤ 2Cn−
3

2
−α ≤ 2Cn−1.
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Therefore,

P
(
Tk ≥ x

)
≤ P

(
Tk ≥ x,

∣∣Tk − T̃k
∣∣≤ 2Cn−1

)
+ P(Bc)(A.71)

≤ P

(
T̃k ≥ x− 2Cn−1

)
+ P(Bc),

and similarly,

P
(
Tk ≥ x

)
≥ P

(
Tk ≥ x, B

)
≥ P

(
T̃k ≥ x+2Cn−1, B

)
(A.72)

≥ P

(
T̃k ≥ x+ 2Cn−1

)
− P(Bc).

As for the bound of P(Bc), notice that

P(Bc)≤
k∑

j=1

P
(∣∣Yj − Ỹj

∣∣>n−2
)
+ P
(
Ṽ 2
k ≤ C̃2

2n/2
)
.

By Chebyshev’s inequality and (5.38) with r = 2, we obtain

k∑

j=1

P
(∣∣Yj − Ỹj

∣∣> n−2
)
≤ n1−αn4+2αa21e

−2a2nατ ≤Ce−a2nατ

.

In addition,

P(Ṽ 2
k ≤ C̃2

2n/2)≤ P

( k/2∑

ℓ=1

Ỹ 2
2ℓ−1 < C̃2

2n/4
)
+ P

( k/2∑

ℓ=1

Ỹ 2
2ℓ < C̃2

2n/4
)
,

where, without loss of generality, we assumed that k/2 is an integer. Denoting Wℓ =
−Ỹ 2

2ℓ−1 +E(Ỹ 2
2ℓ−1), 1≤ ℓ≤ k/2, (A.66) suggests that

Wℓ ≤ E(Ỹ 2
2ℓ−1)≤ C̃2

1m, E(Wℓ) = 0,

and

k/2∑

ℓ=1

E(W 2
ℓ ) =

k/2∑

i=1

Var(Ỹ 2
2i−1)≤

k/2∑

ℓ=1

E(Ỹ 4
2ℓ−1)≤ C̃4

1km
2/2.

Observe that {Y2ℓ−1,1≤ ℓ≤ k/2} is a sequence of independent random variables. It follows
from Bernstein’s inequality and (A.67) that

P

( k/2∑

ℓ=1

Y 2
2ℓ−1 ≤

C̃2
2

4
n
)

= P

( k/2∑

ℓ=1

Wℓ ≥− C̃
2
2

4
n+

k/2∑

i=1

E
(
Ỹ 2
2i−1

))
≤ P

( k/2∑

ℓ=1

Wℓ ≥
C̃2
2

4
n
)

≤ exp
{
−

(
(C̃2

2n)/4
)2

2
(
C̃2
1m · C̃2

2n/4 + C̃4
1km

2/2
)
}
≤ exp{−Cn1−α},

for some constant C depends on τ,α,ω1, a1 and a2. By the same token,

P

( k/2∑

ℓ=1

Y 2
2ℓ ≤

C̃2
2

4
n
)
≤ exp{−Cn1−α}.
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Overall, we obtain

P(Bc)≤Ce−a2nατ

+ 2e−Cn1−α

.(A.73)

The proof of Proposition 5.10 is completed.

A.11. Proof of Theorem 4.1. Define f(x) = x1{|x| ≤ τ}+τ1{x > τ}−τ1{x <−τ}.
In view of the expression shown in (4.10) and the notations presented above Theorem 4.1,
the main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
Ψ∗

x and error terms L3,n and Rx under fourth moment, which are defined by

L3,n =
E|f(Y )− µ̃|3√

nσ31
+

E|f(Y )− µ|3√
nσ32

Ψ∗
x = exp

{
(
σ2
σ1

)3x3n−1/2
(4
3
γ3

E(f(Y )− µ̃)3

σ31

− 2γ2
E[(f(Y )− µ̃)(f(Y )− µ)2]

σ1σ22

)}

Rx =
(1+ x)4

n

(
E|f(Y )− µ̃|4

σ41
+

E|f(Y )− µ|4
σ42

)

+ nE

[
exp

{ (f(Y )− µ̃)2

(f(Y )− µ)2 + σ22
· σ

2
2

σ21

}
1

(
(1 + x)

|f(Y )− µ̃|√
nσ1

> 1
)]
,

where γ = 1
2(1 +

c
x).

Throughout the rest of the proof, A is an absolute positive constant which may vary at
each appearance. When the higher moment E[Y 4]<∞ is assumed, we can figure out more
accurate estimate for the bias-corrected term Ψ∗

x. Let us collect the bounds for some crucial
quantities in the proposition below. The proof of Proposition A.1 will be given in Section
A.16.

PROPOSITION A.1. If E|Y |4 <∞, then we have there exists an absolute positive con-

stant A such that

|σ21 − σ2| ≤ AE|Y |4
τ2

, |σ22 − σ2| ≤ AE|Y |4
τ2

, |µ− µ̃| ≤ E|Y |4
τ3

.(A.74)

Moreover, when τ satisfies (4.11), we have

(A.75)
∣∣∣σ

2
2

σ21
− 1
∣∣∣≤ A(E|Y |4)2

σ2τ6
,

and there exist absolute positive constants A and a0 such that

(A.76)
∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |4

στ3

for 0< x≤ a0
τ3σ√
nE|Y |4 , and

(A.77) Rx ≤
A(1 + x)4E|Y |4

nσ4
.

In addition, there exist positive constants a1 and C depending on σ, E|Y |3 and E|Y |4 such

that

(A.78) Ψ∗
x = exp

{
− x3E(Y − µ)3

3
√
nσ3

}[
1 +O1

( x3√
nτ

+
x2

τ3

)]
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for 2< x≤ a1min{ τ3√
n
, (
√
nτ)1/3, τ3/2}, where O1 is a bounded quantity such that |O1| ≤

C .

We next consider two cases of 0 < x≤ 2 and x > 2, separately. First for 0< x≤ 2, it is
immediate that 1−Φ(x)≥ 1−Φ(2). Moreover, it follows from Proposition 5.1 and (A.76)
that

P(S∗
τ,n > x) = [1−Φ(x)]

[
1 +O

( 1√
n
+

√
n

τ3

)]
.

Since the bias term exp{−x3
E(Y−µ)3

3
√
nσ3 }= 1+O( 1√

n
) for 0< x≤ 2, we obtain

P(S∗
τ,n > x) = [1−Φ(x)] exp

{
− x3E(Y − µ)3

3
√
nσ3

}[
1 +O

( 1√
n
+

√
n

τ3

)]
(A.79)

for 0<x≤ 2, which completes the proof of (4.12) for 0<x≤ 2. Then we deal with the case
of x > 2. Applying Theorem 2.1 to (4.10) yields

P(S∗
τ,n > x) =

[
1−Φ(

σ2
σ1
x+ c)

]
Ψ∗

xe
O1Rx

(
1 +O2(1 +

σ2
σ1
x)L3,n

)
(A.80)

uniformly for |c| ≤ x/5 and x > 2 satisfying (2.6) and (2.7). Note that (2.6) and (2.7) are

satisfied when 2 < x ≤ a2
√
nσ4

E|Y |4 for some constant a2 > 0. By plugging in the results in
Proposition A.1, we can obtain

P(S∗
τ,n >x) = [1−Φ(x)] exp

{
− x3E(Y − µ)3

3
√
nσ3

}

×
[
1 +O1

(x√n
τ3

+
x3√
nτ

+
x4

n
+

x√
n
+
x2

τ3

)]

for 2 < x ≤ a3min{τ3n−1/2, (
√
nτ)1/3, n1/4, τ3/2}. Observe that when τ satisfies (4.11),

τ3/2 ≥ O(n1/4) and 1+x2

τ3 ≤ A (1+x)
√
n

τ3 for x = O(
√
n). Moreover, by the basic inequal-

ity that a + b > (a2b)1/3 for a > 0 and b > 0, we have x3√
nτ

≤ x4

n + x
√
n

τ3 and (
√
nτ)1/3 ≥

min{n1/4, τ3n−1/2}. Hence the desired result (4.12) holds for x ∈ (2, c2min{n1/4, τ3n−1/2}),
which together with the result (A.79) for 0< x≤ 2 completes the proof of Theorem 4.1.

A.12. Proof of Theorem 4.2. Define g(Y ) = (Y − µ)1{|Y | ≤ τ}. Recall that

(A.81) P(U∗
τ,n >x) = P

(S◦
n − δ

V ◦
n

>
σ4
σ3
x
)
,

where

S◦
n =

n∑

i=1

g(Yi)− µ0√
nσ3

, (V ◦
n )

2 =

n∑

i=1

[g(Yi)]
2

nσ24
and δ =

√
nµ0
σ3

.

The main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
Ψ∗

x and error terms L3,n and Rx under fourth moment, which are defined by

L3,n =
E|g(Y )− µ0|3√

nσ33
+

E|g(Y )|3√
nσ34

Ψ∗
x = exp

{
(
σ4
σ3

)3x3n−1/2
(4
3
γ3

E(g(Y )− µ0)
3

σ33
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− 2γ2
E[(g(Y )− µ0)(g(Y ))2]

σ3σ
2
4

)}

Rx =
(1+ x)4

n

(
E|g(Y )− µ0|4

σ43
+

E|g(Y )|4
σ44

)

+ nE

[
exp

{(g(Y )− µ0)
2

(g(Y ))2 + σ24
· σ

2
4

σ23

}
1

(
(1 + x)

|g(Y )− µ0|√
nσ3

> 1
)]
,

where γ = 1
2(1 +

δ
x).

When the higher moment E[Y 4]<∞ is assumed, we can figure out more accurate estimate
for the bias-corrected term Ψ∗

x. Let us collect the bounds for some crucial quantities in the
proposition below. The proof of Proposition A.2 will be given in Section A.17.

PROPOSITION A.2. If E|Y |4 <∞, then we have there exists an absolute positive con-

stant A such that

|σ23 − σ2| ≤ AE|Y |4
τ2

, |σ24 − σ2| ≤ AE|Y |4
τ2

, |µ0| ≤
E|Y |4
τ3

.(A.82)

Moreover, when τ satisfies (4.11), we have

(A.83)
∣∣∣σ

2
4

σ23
− 1
∣∣∣≤ A(E|Y |4)2

σ2τ6
,

and there exist absolute positive constants A and a0 such that

(A.84)
∣∣∣
1−Φ

(
σ4

σ3
x+ δ

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |4

στ3

for 0< x≤ a0
τ3σ√
nE|Y |4 , and

(A.85) Rx ≤
A(1 + x)4E|Y |4

nσ4
.

In addition, there exist positive constants a1 and C depending on σ, E|Y |3 and E|Y |4 such

that

(A.86) Ψ∗
x = exp

{
− x3E(Y − µ)3

3
√
nσ3

}[
1 +O1

( x3√
nτ

+
x2

τ3

)]

for 2< x≤ a1min{ τ3√
n
, (
√
nτ)1/3, τ3/2}, where O1 is a bounded quantity such that |O1| ≤

C .

We next consider two cases of 0 < x≤ 2 and x > 2, separately. First for 0< x≤ 2, it is
immediate that 1−Φ(x)≥ 1−Φ(2). Moreover, it follows from Proposition 5.1 and (A.84)
that

P(U∗
τ,n > x) = [1−Φ(x)]

[
1 +O

( 1√
n
+

√
n

τ3

)]
.

Since the bias term exp{−x3
E(Y−µ)3

3
√
nσ3 }= 1+O( 1√

n
) for 0< x≤ 2, we obtain

P(U∗
τ,n > x) = [1−Φ(x)] exp

{
− x3E(Y − µ)3

3
√
nσ3

}[
1 +O

( 1√
n
+

√
n

τ3

)]
(A.87)
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for 0< x≤ 2. Next we deal with the case of x > 2. Applying Theorem 2.1 to (A.81) yields

P(U∗
τ,n >x) =

[
1−Φ(

σ4
σ3
x+ δ)

]
Ψ∗

xe
O1Rx

(
1 +O2(1 +

σ4
σ3
x)L3,n

)
(A.88)

uniformly for |δ| ≤ x/5 and x > 2 satisfying (2.6) and (2.7). Note that (2.6) and (2.7) are

satisfied when 2 < x ≤ a2
√
nσ4

E|Y |4 for some constant a2 > 0. By plugging in the results in
Proposition A.2, we can obtain

P(U∗
τ,n >x) = [1−Φ(x)] exp

{
− x3E(Y − µ)3

3
√
nσ3

}

×
[
1 +O1

(x√n
τ3

+
x3√
nτ

+
x4

n
+

x√
n
+
x2

τ3

)]

for 2 < x ≤ a3min{τ3n−1/2, (
√
nτ)1/3, n1/4, τ3/2}. Observe that when τ satisfies (4.11),

τ3/2 ≥ O(n1/4) and 1+x2

τ3 ≤ A (1+x)
√
n

τ3 for x = O(
√
n). Moreover, by the basic inequal-

ity that a + b > (a2b)1/3 for a > 0 and b > 0, we have x3√
nτ

≤ x4

n + x
√
n

τ3 and (
√
nτ)1/3 ≥

min{n1/4, τ3n−1/2}. Hence the desired result holds for x ∈ (2, c2min{n1/4, τ3n−1/2}),
which together with the result (A.87) for 0< x≤ 2 completes the proof of Theorem 4.2.

A.13. Proof of Theorem 4.3. Recall that f(x) = x1{|x| ≤ τ}+ τ1{x > τ} − τ1{x <
−τ}. In view of the expression shown in (4.10) and the notations presented above Theo-
rem 4.1, the main idea is to apply Theorem 2.1 and estimate the corresponding error terms
L3,n,Ψ

∗
x and Rx, which are defined by

L3,n =
E|f(Y )− µ̃|3√

nσ31
+

E|f(Y )− µ|3√
nσ32

Ψ∗
x = exp

{
(
σ2
σ1

)3x3n−1/2
(4
3
γ3

E(f(Y )− µ̃)3

σ31

− 2γ2
E[(f(Y )− µ̃)(f(Y )− µ)2]

σ1σ22

)}

Rx =
(1+ x)3√

n

(
E|f(Y )− µ̃|3

σ31
+

E|f(Y )− µ|3
σ32

)

+ nE

[
exp

{ (f(Y )− µ̃)2

(f(Y )− µ)2 + σ22
· σ

2
2

σ21

}
1

(
(1 + x)

|f(Y )− µ̃|√
nσ1

> 1
)]
,

where γ = 1
2(1 +

c
x).

We collect the bounds for some crucial quantities in the proposition below. The proof of
Proposition A.3 will be omited since it is similar to the proof of Proposition A.1.

PROPOSITION A.3. If E[|Y |3]<∞, then we have there exists an absolute positive con-

stant A such that

E|f(Y )− µ|3 ≤AE|Y |3, E|f(Y )− µ̃|3 ≤AE|Y |3(A.89)

|σ21 − σ2| ≤ AE|Y |3
τ

, |σ22 − σ2| ≤ AE|Y |3
τ

, |µ− µ̃| ≤ E|Y |3
τ2

.(A.90)

Moreover, when τ satisfies (4.14), we have

(A.91)
∣∣∣σ

2
2

σ21
− 1
∣∣∣≤ A(E|Y |3)2

σ2τ4
,
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and there exist absolute constants A and a0 such that

(A.92)
∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |3

στ2

for 0< x≤ a0
τ2σ√
nE|Y |3 , and

(A.93) Rx ≤
A(1 + x)3E|Y |3

σ3
√
n

.

We next consider two cases of 0 < x ≤ 2 and x > 2, separately. First for 0 < x ≤ 2, it
follows from Proposition 5.1 that

∣∣∣P(S∗
τ,n > x)−

[
1−Φ

(σ2
σ1
x+ c

)]∣∣∣≤AL3,n.(A.94)

From Proposition A.3 that when τ satisfies (4.14) with some large a1, we can see that

L3,n ≤
AE|Y |3
σ3

√
n
,(A.95)

and
∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤ A

√
nE|Y |3
στ2

.(A.96)

Therefore, it holds for 0< x≤ 2 that

(A.97)
P(S∗

τ,n > x)

1−Φ(x)
= 1 +O1

(
E|Y |3
σ3

√
n
+

√
nE|Y |3
στ2

)
,

with |O1| ≤A. The desired result (4.15) has been proved for 0<x≤ 2.
Now we proceed to prove for x > 2. Applying Theorem 2.1 to (4.10) yields

P(S∗
τ,n > x) =

[
1−Φ(

σ2
σ1
x+ c)

]
Ψ∗

xe
O1Rx

(
1 +O2(1 +

σ2
σ1
x)L3,n

)
(A.98)

uniformly for |c| ≤ x/5 and x> 2 satisfying (2.6) and (2.7). When τ satisfies (4.14), we can
obtain from Proposition A.3 that |σ1/σ2 − 1| ≤A and

(A.99)
∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |3

στ2

for x≤ a2
τ2σ√
nE|Y |3 , and

(A.100) Rx ≤
A(1 + x)3E|Y |3

σ3
√
n

.

Moreover, since | cx | ≤ 1/5 as τ satisfies (4.14) and x > 2, we have

(A.101) Ψ∗
x ≤ exp

{Ax3E|Y |3
σ3

√
n

}
.

In addition, note that the conditions of x shown in (2.6) and (2.7) are satisfied when 0 <

x≤ a2min{
√
nσ3

E|Y |3 ,
τ2σ√
nE|Y |3 }. Consequently, the desired result (4.15) for x > 2 are derived by

substituting (A.95) and (A.99)–(A.101) into (A.98). This completes the proof of Theorem
4.3.
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A.14. Proof of Theorem 4.4. Define g(Y ) = (Y − µ)1{|Y | ≤ τ}. Recall that

(A.102) P(U∗
τ,n >x) = P

(S◦
n − δ

V ◦
n

>
σ4
σ3
x
)
,

where

S◦
n =

n∑

i=1

g(Yi)− µ0√
nσ3

, (V ◦
n )

2 =

n∑

i=1

[g(Yi)]
2

nσ24
and δ =

√
nµ0
σ3

.

The main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
Ψ∗

x and error terms L3,n and Rx under fourth moment, which are defined by

L3,n =
E|g(Y )− µ0|3√

nσ33
+

E|g(Y )|3√
nσ34

Ψ∗
x = exp

{
(
σ4
σ3

)3x3n−1/2
(4
3
γ3

E(g(Y )− µ0)
3

σ33

− 2γ2
E[(g(Y )− µ0)(g(Y ))2]

σ3σ24

)}

Rx =
(1+ x)4

n

(
E|g(Y )− µ0|4

σ43
+

E|g(Y )|4
σ44

)

+ nE

[
exp

{(g(Y )− µ0)
2

(g(Y ))2 + σ24
· σ

2
4

σ23

}
1

(
(1 + x)

|g(Y )− µ0|√
nσ3

> 1
)]
,

where γ = 1
2(1 +

δ
x).

We collect the bounds for some crucial quantities in the proposition below. The proof of
Proposition A.4 will be omited since it is similar to the proof of Proposition A.2.

PROPOSITION A.4. If E[|Y |3]<∞, then we have there exists an absolute positive con-

stant A such that

E|g(Y )− µ0|3 ≤AE|Y |3, E|g(Y )|3 ≤AE|Y |3,(A.103)

|σ23 − σ2| ≤ AE|Y |3
τ

, |σ24 − σ2| ≤ AE|Y |3
τ

, |µ0| ≤
E|Y |3
τ2

.(A.104)

Moreover, when τ satisfies (4.14), we have

(A.105)
∣∣∣σ

2
4

σ23
− 1
∣∣∣≤ A(E|Y |3)2

σ2τ4
,

and there exist absolute constants A and a0 such that

(A.106)
∣∣∣
1−Φ

(
σ4

σ3
x+ δ

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |3

στ2

for 0< x≤ a0
τ2σ√
nE|Y |3 , and

(A.107) Rx ≤
A(1 + x)3E|Y |3

σ3
√
n

.

We next consider two cases of 0 < x ≤ 2 and x > 2, separately. First for 0 < x ≤ 2, it
follows from Proposition 5.1 that

∣∣∣P(U∗
τ,n >x)−

[
1−Φ

(σ4
σ3
x+ δ

)]∣∣∣≤AL3,n(A.108)
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From Proposition A.4 that when τ satisfies (4.14) with some large a1, we can see that

L3,n ≤ AE|Y |3
σ3

√
n
,(A.109)

and
∣∣∣
1−Φ

(
σ4

σ3
x+ δ

)

1−Φ(x)
− 1
∣∣∣≤ A

√
nE|Y |3
στ2

.(A.110)

Therefore, it holds for 0< x≤ 2 that

(A.111)
P(U∗

τ,n > x)

1−Φ(x)
= 1+O1

(
E|Y |3
σ3

√
n
+

√
nE|Y |3
στ2

)
,

with |O1| ≤A. The desired result has been proved for 0< x≤ 2.
Now we proceed to prove for x > 2. Applying Theorem 2.1 to (A.102) yields

P(U∗
τ,n >x) =

[
1−Φ(

σ4
σ3
x+ δ)

]
Ψ∗

xe
O1Rx

(
1 +O2(1 +

σ4
σ3
x)L3,n

)
(A.112)

uniformly for |c| ≤ x/5 and x> 2 satisfying (2.6) and (2.7). When τ satisfies (4.14), we can
obtain from Proposition A.4 that |σ3/σ4 − 1| ≤A and

(A.113)
∣∣∣
1−Φ

(
σ4

σ3
x+ δ

)

1−Φ(x)
− 1
∣∣∣≤ A(1 + x)

√
nE|Y |3

στ2

for x≤ a2
τ2σ√
nE|Y |3 , and

(A.114) Rx ≤
A(1 + x)3E|Y |3

σ3
√
n

.

Moreover, since | δx | ≤ 1/5 as τ satisfies (4.14) and x > 2, we have

(A.115) Ψ∗
x ≤ exp

{Ax3E|Y |3
σ3

√
n

}
.

In addition, note that the conditions of x shown in (2.6) and (2.7) are satisfied when 0 <

x≤ a2min{
√
nσ3

E|Y |3 ,
τ2σ√
nE|Y |3 }. Consequently, the desired result (4.15) for x > 2 are derived by

substituting (A.109) and (A.113)–(A.115) into (A.112). This completes the proof of Theorem
4.4.

A.15. Proof of Theorem 4.5. Notice that Φ−1(1− α/2p) = 2(1 + o(1))
√

log 2p/α =

o(n1/6) lays in the range of Theorem 4.3, hence by Theorem 4.3,
p∑

j=1

[
P(µj <Lj) + P(µj >Uj)

]
≤ 2

p∑

j=1

P
(
S∗
τ,n >Φ−1(1−α/2p)

)
= α+ o(1),

which completes the proof of Theorem 4.5.

A.16. Proof of Proposition A.1. From the definition of f(·), it is obvious that |f(Y )| ≤
|Y | and |f(Y )− Y | ≤ |Y |1(|Y |> τ). First for the bound for |σ21 − σ2|, it holds that

|σ21 − σ2|= |E(f(Y )− µ̃)2 −E(Y − µ)2|
≤ E

{
(2|Y |+ 2E|Y |)(|Y |1(|Y |> τ) +E[|Y |1(|Y |> τ)])

}

≤ AE|Y |4
τ2

.
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Similarly, we can obtain the same bound for |σ22 − σ2|. Since |f(Y )− Y | ≤ |Y |1(|Y |> τ),
we have

|µ− µ̃|= |Ef(Y )− EY |

≤ E|f(Y )− Y | ≤ E[|Y |1(|Y |> τ)]≤ E|Y |4
τ3

.

As for (A.75), it follows by (A.74) that when τ satisfies (4.11),
∣∣∣σ

2
2

σ21
− 1
∣∣∣= |E[(f(Y )− µ)2]− E[(f(Y )− µ̃)2]|

σ21

=
(µ− µ̃)2

σ21
≤ (µ− µ̃)2

σ2 − AE|Y |4
τ2

≤ A(µ− µ̃)2

σ2
≤ A(E|Y |4)2

σ2τ6
.(A.116)

Now we proceed to show (A.76). First for 0<x≤ 2, it holds that 1−Φ(2)≤ 1−Φ(x)≤ 1.
Then we can deduce that

∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤A

∣∣∣Φ
(σ2
σ1
x+ c

)
−Φ(x)

∣∣∣

≤A
[(σ2
σ1

− 1
)
x+ c

]
.(A.117)

Recalling that |c| =
√
n|µ−µ̃|
σ1

≤ A
√
nE|Y |4
στ3 , and |σ1

σ2
− 1| ≤ |σ2

1

σ2
2
− 1| ≤ A(E|Y |4)2

σ2τ6 . Therefore, it
follows that for 0< x≤ 2,

∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤A

((E|Y |4)2
σ2τ6

+

√
nE|Y |4
στ3

)

≤ A
√
nE|Y |4
στ3

,(A.118)

where the last inequality is derived by using the fact that
√
nE|Y |4
στ3 ≥ A(E|Y |4)2

σ2τ6 for τ satisfying
(4.11). For x > 2, it holds that when x≤ a0

τ3σ
E|Y |4 ,

∣∣∣
1−Φ

(
σ2

σ1
x+ c

)

1−Φ(x)
− 1
∣∣∣≤A

[(σ2
σ1

− 1
)
x2 + cx

]
exp

{
A
[(σ22
σ21

− 1
)
x2 + cx

]}

≤A
[(σ2
σ1

− 1
)
x2 + cx

]

≤ Ax
√
nE|Y |4
τ3σ

.

The above results for the two cases of 0< x≤ 2 and 2< x≤ a0
τ3σ
E|Y |4 yield the desired result

(A.76).
Next we proceed to prove (A.77). Recall that

Rx ≤A
(1 + x)4E|Y |4

nσ4
+ rx,(A.119)

where

rx = nE

[
exp

{ (f(Y )− µ̃)2

(f(Y )− µ)2 + σ22
· σ

2
2

σ21

}
1

(
(1 + x)

|f(Y )− µ̃|√
nσ1

> 1
)]
.
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The goal is to upper bound the exponential part. By (A.75) and the range (4.11) for τ , we can
obtain

(f(Y )− µ̃)2

(f(Y )− µ)2 + σ22
· σ

2
2

σ21
≤A

(f(Y )− µ̃)2

(f(Y )− µ)2 + σ22

=A
(f(Y )− µ̃)2

(f(Y )− µ̃)2 + κ1(f(Y )− µ̃) + κ2

=
A

1 + κ1(f(Y )− µ̃)−1 + κ2(f(Y )− µ̃)−2
,(A.120)

where

κ1 = 2(µ̃− µ)≤ AE|Y |4
τ3

,

κ2 = σ22 + (µ̃− µ)2 ≥Aσ2 − A(E|Y |4)2
τ6

≥Aσ2

for τ satisfying (4.11). Observing that for any x ∈R,

1 + κ1x+ κ2x
2 ≥ 1− κ21

4κ2
,

hence when (4.11) hold with large number c1 such that κ21 ≤ κ2, we obtain

(f(Y )− µ̃)2

(f(Y )− µ)2 + σ22
· σ

2
2

σ21
≤A.(A.121)

Consequently, it follows that

rx ≤A
(1 + x)4E(|f(Y )− µ̃|4)

nσ41
≤ A(1 + x)4E|Y |4

nσ4
,

which combining with (A.119) yields the desired result (A.77).
Finally, we deal with the proof of (A.78) when τ satisfies (4.11). It follows from (A.75)

that
∣∣∣
(σ2
σ1

)3
− 1
∣∣∣≤ A(E|Y |4)2

σ2τ6
.(A.122)

Since γ = 1
2 (1 +

c
x) and |c| ≤ A

√
n|µ−µ̃|
σ ≤ A

√
nE|Y |4
στ3 ≤ A0 for some absolute constant A0

when τ satisfies (4.11), we have |c|/x≤A0/2 for x > 2 and τ satisfying (4.11). In addition,
∣∣∣γ − 1

2

∣∣∣≤ A
√
nE|Y |4
xστ3

,(A.123)

and we can obtain from (A.75) that
∣∣∣E(f(Y )− µ̃)3

σ31
− E(Y − µ)3

σ3

∣∣∣

≤ |E(f(Y )− µ̃)3 − E(Y − µ)3|
σ31

+ |E(Y − µ)3|
∣∣∣ 1
σ31

− 1

σ3

∣∣∣

≤A
(
E|Y |4
σ3τ

+
|E(Y − µ)3|(E|Y |4)2

σ5τ6

)
=O

(1
τ

)
.(A.124)
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Similarly,
∣∣∣E[(f(Y )− µ̃)(f(Y )− µ)2]

σ1σ
2
2

− E(Y − µ)3

σ3

∣∣∣=O
(1
τ

)
.(A.125)

Then the desired result (A.78) is derived by plugging in the above bounds in (A.122)–
(A.125). This completes the proof of Proposition A.1.

A.17. Proof of Proposition A.2. Recall the definition that g(Y ) = (Y −µ)1{|Y | ≤ τ}.
First for the bound for |σ21 − σ2|, it holds that

|σ21 − σ2|= |E{[g(Y )− µ0 − (Y − µ)][g(Y )− µ0 + (Y − µ)]}|
≤Aτ−2

E
{(

|Y |3 + |µ|Y 2 + E|Y |3 + |µ|EY 2
)
(|Y |+ |µ|+E|Y |

)}

≤ AE|Y |4
τ2

.

Similarly, we can obtain the same bound for |σ22 − σ2|. Moreover, we have

|µ0|= |Eg(Y )| ≤ E[|Y − µ|1{|Y |> τ}]≤ E|Y |4
τ3

.

As for (A.83), it follows by (A.82) that when τ satisfies (4.11),
∣∣∣σ

2
4

σ23
− 1
∣∣∣= |E[(g(Y )− µ0)

2]− E[(g(Y ))2]|
σ23

=
µ20
σ23

≤ µ20

σ2 − AE|Y |4
τ2

≤ Aµ20
σ2

≤ A(E|Y |4)2
σ2τ6

.(A.126)

Therefore, (A.84) can be proved by the same procedure of proving (A.76).
Next we proceed to prove (A.85). Recall that

Rx ≤A
(1 + x)4E|Y |4

nσ4
+ rx,(A.127)

where

rx = nE

[
exp

{(g(Y )− µ0)
2

(g(Y ))2 + σ24
· σ

2
4

σ23

}
1

(
(1 + x)

|g(Y )− µ0|√
nσ3

> 1
)]
.

The key point is to upper bound the exponential part. By (A.83) and the range (4.11) for τ ,
we can obtain

(g(Y )− µ0)
2

(g(Y ))2 + σ24
· σ

2
4

σ23
≤A

(g(Y )− µ0)
2

(g(Y ))2 + σ24

=A
(g(Y )− µ0)

2

(g(Y )− µ0)2 + κ1(g(Y )− µ0) + κ2

=
A

1 + κ1(g(Y )− µ0)−1 + κ2(g(Y )− µ0)−2
,(A.128)

where

κ1 = 2µ0 satisfying |κ1| ≤
AE|Y |4
τ3

,

κ2 = σ24 + (µ0)
2 ≥Aσ2 − A(E|Y |4)2

τ6
≥Aσ2
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for τ satisfying (4.11). Observing that for any x ∈R,

1 + κ1x+ κ2x
2 ≥ 1− κ21

4κ2
,

hence when (4.11) hold with large number c1 such that κ21 ≤ κ2, we obtain

(g(Y )− µ0)
2

(g(Y ))2 + σ24
· σ

2
4

σ23
≤A.(A.129)

Consequently, it follows that

rx ≤A
(1 + x)4E(|g(Y )− µ0|4)

nσ43
≤ A(1 + x)4E|Y |4

nσ4
,

which combining with (A.119) yields the desired result (A.85).
Finally, we deal with the proof of (A.86) when τ satisfies (4.11). It follows from (A.83)

that
∣∣∣
(σ4
σ3

)3
− 1
∣∣∣≤ A(E|Y |4)2

σ2τ6
.(A.130)

Since γ = 1
2(1+

δ
x) and |δ| ≤ A

√
n|µ0|
σ ≤ A

√
nE|Y |4
στ3 ≤A0 for some absolute constantA0 when

τ satisfies (4.11), we have |δ|/x≤A0/2 for x > 2 and τ satisfying (4.11). In addition,
∣∣∣γ − 1

2

∣∣∣≤ A
√
nE|Y |4
xστ3

,(A.131)

and we can obtain from (A.83) that
∣∣∣E(g(Y )− µ0)

3

σ33
− E(Y − µ)3

σ3

∣∣∣

≤A
|E(g(Y )− µ0)

3 −E(Y − µ)3|
σ33

+A[E|Y − µ|3]
∣∣∣ 1
σ33

− 1

σ3

∣∣∣

≤A
(
E|Y |4
σ3τ

+
|E(Y − µ)3|(E|Y |4)2

σ5τ6

)
=O

(1
τ

)
.(A.132)

Similarly,
∣∣∣E[(g(Y )− µ0)(g(Y ))2]

σ3σ24
− E(Y − µ)3

σ3

∣∣∣=O
(1
τ

)
.(A.133)

Then the desired result (A.86) is derived by plugging in the above bounds in (A.130)–
(A.133). This completes the proof of Proposition A.2.

A.18. Proof of Corollary 2.1. We apply Theorem 2.1 with Y 2
i = EX2

i , c0 = 0 and c=
0. In this case,

Ψ∗
x = exp

{x3EX3
1

6σ3
√
n

}
,L3,n ≤ 2E|X1|3

σ3
√
n
, δx,1 ≤

4(1 + x)4EX4
1

n2σ4
.

For x≤ t0σ
√
n/4, we have 2x/(σ

√
n)≤ t0/2 and thus

rx,1 = E

[
exp

{
min

(X2
1

σ2
,
2xX1

σ
√
n

)}
1(|(1 + x)X1|> σ

√
n)

]

≤ E

[
exp

{2xX1

σ
√
n

}
1(|(1 + x)X1|>σ

√
n)

]
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≤ E
[
et0X1/2

1{(1 + x)|X1|> σ
√
n}
]

≤ (1 + x)4n−2
E
[
|X1|4et0X1/2

]

≤Ct−4
0 E

[
e3t0X1/4

]
(1 + x)4n−2.

Therefore it follows from Theorem 2.1 that

P(Sn >xσ
√
n)

1−Φ(x)
= exp

{x3EX3
1

6σ3
√
n
+O

((1 + x)4

n

)}[
1 +O

(1 + x√
n

)]

uniformly for 0< x≤O(n1/2). Hence (2.8) holds for 0< x≤O(n1/4). This completes the
proof of Corollary 2.1.

APPENDIX B: ADDITIONAL LEMMAS AND PROOFS

B.1. Proof of Lemma A.1. Recall the notation Wi = 2xXi − x2Yi
2. Define

νi =min

{
Xi

2

Yi
2 + c0EYi

2 + c0x
2
EYi

2,2xXi

}
.

Observe that Wi ≤ νi. For 1/4≤ λ≤ 3/4 and k ∈ {0,1,2,3}, by the elementary inequalities
|s|ke−s ≤ c1(k) and skeλs ≤ c2(k)e

s for s≥ 0, we obtain

E{|Wi|keλWi
1(|(1 + x)Xi| ≥ 1)}(B.1)

≤AE{e(0∨Wi)
1(|(1 + x)Xi| ≥ 1)}

≤A
(
E{eνi

1(|(1 + x)Xi| ≥ 1)}+ δx,i
)

≤ARx,i,

where the last inequality comes from the fact that c0x2EYi2 ≤ 1/4 for x satisfying (2.7).
Additionally, there is a constant A1(k, s0) such that |s|kes ≤A1(k, s0) if s≤ s0. Hence,

E{|Wi|keλWi
1(|(1 + x)Xi| ≤ 1, |(1 + x)Yi| ≥ 1)}

≤AP(|(1 + x)Xi| ≤ 1, |(1 + x)Yi| ≥ 1)

≤Aδx,i.

For simplicity, denote Ui = {|(1 + x)Xi| ≤ 1, |(1 + x)Yi| ≤ 1}. We have

E{Wi
keλWi}= E{Wi

keλWi
1(Ui)}+O(1)Rx,i,(B.2)

where and hereafter O(1) is a bounded quantity.
By Taylor expansion,

E{eλWi
1(Ui)}= 1+ λE{Wi1(Ui)}+

λ2

2
E{Wi

2
1(Ui)}(B.3)

+
λ3

6
E{Wi

3
1(Ui)}+O(1)λ4E{Wi

4
1(Ui)}.

The analysis for the terms on the right hand side of the above equality is similar. We calculate
the third term for example. Notice that

E{Wi
2
1(Ui)}= 4x2EXi

2 − 4x3EXiYi
2 + x4E{Yi41(Ui)}

− 4x2E{Xi
2
1(|(1 + x)Xi| ≥ 1)}

− 4x2E{Xi
2
1(|(1 + x)Xi| ≤ 1, |(1 + x)Yi| ≥ 1)}
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+ 4x3E{XiYi
2
1(|(1 + x)Xi| ≤ 1, |(1 + x)Yi| ≥ 1)}

+ 4x3E{XiYi
2
1(|(1 + x)Xi| ≥ 1, |(1 + x)Yi| ≤ 1)}

+ 4x3E{XiYi
2
1(|(1 + x)Xi| ≥ 1, |(1 + x)Yi| ≥ 1)}.

By the basic inequality ab2 ≤ a3 + b3 for a > 0, b > 0 and Chebyshev’s inequality, we obtain

E{Wi
2
1(Ui)}= 4x2EXi

2 − 4x3EXiYi
2 +O(1)δx,i.

In the same manner,

E{Wi1(Ui)}=−x2EYi2 +O(1)δx,i, E{Wi
3
1(Ui)}= 8x3EXi

3 +O(1)δx,i,

and |E{Wi
4
1(Ui)}| ≤O(1)δx,i.

Therefore (B.1)–(B.3) yield

EeλWi = 1− λx2EYi
2 +2λ2x2EXi

2(B.4)

− 2λ2x3EXiYi
2 +

4

3
λ3x3EXi

3 +O(1)Rx,i.

Because x satisfies (2.7),

|EeλWi − 1| ≤ 1/2.

Furthermore, by Lemma A.2 we have

|EeλWi − 1|2 ≤A
[
x4E{Yi41(|(1 + x)Yi| ≤ 1)}+ x4E{Xi

4
1(|(1 + x)Xi| ≤ 1)}

+ x6E{(Xi
6 + Yi

6)1(Ui)}+Rx,i

]

≤ARx,i,

Because | log(1 + a)− a| ≤ a2 whenever |a| ≤ 1/2, it follows from (B.4) that

logEeλWi =−λx2EYi2 +2λ2x2EXi
2 − 2λ2x3EXiYi

2 +
4

3
λ3x3EXi

3 +O(1)Rx,i,

which completes the proof of (A.8). By the same token,

EWie
λWi = E{Wi(1 + λWi +

λ2

2
Wi

2)1(Ui)}+O(1)Rx,i

=−x2EYi2 + 4λx2EXi
2 − 4λx3EXiYi

2 +4λ2x3EXi
3 +O(1)Rx,i,

EWi
2eλWi = E{Wi

2(1 + λWi)1(Ui)}+O(1)Rx,i

= 4x2EXi
2 − 4x3EXiYi

2 + 8λx3EXi
3 +O(1)Rx,i,

E|Wi|3eλWi = E{|Wi|31(Ui)}+O(1)Rx,i

=O(1)x3(E|Xi|3 +E|Yi|3) +O(1)Rx,i.

By a similar procedure to the proof of (A.8), we arrive at (A.9)–(A.11). The proof of Lemma
A.1 is completed.
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B.2. Proof of Lemma A.3. Recall the definition m (λ) =
∑n

i=1 logEe
λWi . Note that

m(λδ) is well-defined under condition (2.3) andm′′(λ) =
∑n

i=1 V arW̃i > 0 for λ> 0, x 6= 0
and nondegenerate Xi and Yi. It follows from Lemmas A.1 and A.2 that for 1/4 ≤ λ≤ 3/4
and x satisfying (2.6)–(2.7),

m′(λ) =
n∑

i=1

EWie
λWi/EeλWi(B.5)

= (4λ− 1)x2 +4λ2x3
n∑

i=1

EXi
3 − 4λx3

n∑

i=1

EXiYi
2 +O(1)Rx,

where |O(1)| ≤ A for some absolute constant A. Therefore, under (2.6) with sufficiently
small constant c1, we have for |δ(x)| ≤ x2/2 that

m′(1/4)< x2 + δ(x)<m′(3/4),

which combined with the fact m′′(λ)> 0 implies that the equation m′(λ) = x2 + δ(x) has a
unique solution λδ such that 1/4<λδ < 3/4. Furthermore, by virtue of (B.5), it holds that

λδ =
1

2
+
δ(x)

4x2
− λδ

2x

n∑

i=1

EXi
3 + λδx

n∑

i=1

EXiYi
2 +O(1)x−2Rx,

and hence (A.15) follows. Again by (B.5) and 1/4<λδ < 3/4, 1/4<λδ0 < 3/4, we obtain

|λδ − λδ0 | ≤A
(
x−2|δ(x)− δ0(x)|+ xL3,n + x−2Rx

)
.

Therefore
∣∣∣λδ − λδ0 −

δ(x)− δ0(x)

4x2

∣∣∣≤A
(
|λδ − λδ0 |xL3,n + x−2Rx

)

≤A
(
x−2Rx + |δ(x)− δ0(x)|x−1L2,n

)
.

Thus we complete the proof of (A.16). The result (A.17) directly follows from (A.8), and
(A.18) follows from (A.16) and (A.17). This completes the proof of Lemma A.3.

B.3. Proof of Lemma A.4. In the sequel, C,C1,C2, . . . are positive constants that may
depend on ω and r0 and may take different values at each appearance. Note that (A.31) is
a special case of (A.33). Denote Zi = Y 2

i − EY 2
i and Gi = 2rxXi − wrx2Y 2

i . Regarding
(A.33), we have

E

{(
V 2
n − 1

)2
e
∑

n
i=1 Gi

}
(B.6)

= E

{( n∑

i=1

Zi

)2
e
∑

n
i=1 Gi

}

= Ee
∑n

i=1 Gi

[ n∑

i=1

EZ2
i e

Gi

EeGi
+
∑

i 6=j

EZie
Gi

EeGi

EZje
Gj

EeGj

]

≤ Ee
∑n

i=1 Gi

[ n∑

i=1

EZ2
i e

Gi

EeGi
+

( n∑

i=1

EZie
Gi

EeGi

)2]
.

We first treat E[Zie
Gi ]. Recall that 0 < r < r0 for some number r0. For x satisfying (2.7),

x2EY 2
i ≤ 1/16 and c0x2EY 2

i ≤ 1/4. It follows from the basic inequality |es − 1| ≤ |s|es∨0
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that

x2
∣∣E[Zie

Gi
1(x|Xi| ≤ 1, x|Yi| ≤ 1)]

∣∣(B.7)

= x2
∣∣E
[
Zi

(
1 +O(x|Xi|+ x2Y 2

i )
)
1(x|Xi| ≤ 1, x|Yi| ≤ 1)

]∣∣

≤C
{
x2E[(Y 2

i +EY 2
i )1{x|Yi|> 1}]

+ x2E[(Y 2
i +EY 2

i )1{x|Xi|> 1, x|Yi| ≤ 1}]
+ x2E[(Y 2

i +EY 2
i )(x|Xi|+ x2Y 2

i )1(x|Xi| ≤ 1, x|Yi| ≤ 1)]
}

≤Cx3(E|Xi|3 + E|Yi|3 + E[|XiY
2
i |]) +Cx4(EY 2

i )
2

≤Cx3(E|Xi|3 + E|Yi|3),
where the last inequality results from Lemma A.2 and the basic inequality ab2 ≤ a3 + b3 for
a, b > 0. In addition, as Gi ≤ 2r < 2 when x|Xi| ≤ 1, we obtain for x > 3

x2|E[Zie
Gi
1(x|Xi| ≤ 1, x|Yi|> 1)]|(B.8)

≤Cx2E[Y 2
i 1(x|Yi|> 1)] +Cx2E[Y 2

i ]P(x|Yi|> 1)

≤Cx3E[|Yi|31(x|Yi|> 1)]≤Cδx,i.

Moreover, as x2EY 2
i ≤ 1/16,

x2|E[Zie
Gi
1(x|Xi|> 1)|(B.9)

≤ x2E[Y 2
i e

Gi
1(x|Xi|> 1)] +E[eGi

1(x|Xi|> 1)].

As for the second error term, we have

E[eGi
1(x|Xi|> 1)]

= E[eGi
1(x|Xi|> 1,Xi ≤ 0)] +E[eGi

1(x|Xi|> 1,Xi > 0)]

≤ x3E[|X3
i |1(x|Xi|> 1)] + E[eGi

1(xXi > 1)].

Observe that when xXi > 1,

eGi = e2rxXi−ωrx2Y 2
i ≤ e2rxXi ≤ e2xXi

and by Cauchy inequality for 0< r < r0 < ω,

2rxXi − ωrx2Y 2
i ≤ 2(ωr)1/2xXi − ωrx2Y 2

i(B.10)

≤ x2X2
i

x2Y 2
i + c0x2EY

2
i

+ ωrc0x
2
EY 2

i .

Therefore

E[eGi
1(x|Xi|> 1)](B.11)

≤ x3E[|Xi|31(x|Xi|> 1)] +C1E

[
e
min
{

X2
i

Y 2
i

+c0EY
2
i
,2xXi

}
1(x|Xi|> 1)

]

≤C2Rx,i.

As for the first error term in (B.9), it follows from the basic inequality |x|ke−δx ≤ C(k, δ)
for some constant C(k, δ) depending on k and δ that

x2E[Y 2
i e

Gi
1(x|Xi|> 1)]
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≤C1E[e
2rxXi−(ω/2+r0/2)rx2Y 2

i
1(x|Xi|> 1)]

≤C1x
3
E[x|Xi|31(x|Xi|> 1)]

+C1E[e
2rxXi−(ω/2+r0/2)rx2Y 2

i
1(xXi > 1)].

As 0< r < r0 < ω/2 + r0/2, by a similar procedure to (B.10) we obtain

x2E[Y 2
i e

Gi
1(x|Xi|> 1)]≤C1Rx,i.(B.12)

Consequently, it follows from the bounds (B.7)–(B.9) and (B.11)–(B.12) that

|E[Zie
Gi ]| ≤C

[
x(E|Xi|3 + |Yi|3) + x−2Rx,i

]
.(B.13)

By similar arguments, we obtain

E[Z2
i e

Gi ]≤Cx−4Rx,i.(B.14)

In addition,

E[eGi ] =

n∏

i=1

(
E[eGi

1(x|Xi|> 1)] + E[eGi
1(x|Xi| ≤ 1, x|Yi| ≤ 1)](B.15)

+E[eGi
1(x|Xi| ≤ 1, x|Yi|> 1)]

)
.

Note that

E[eGi
1(x|Xi| ≤ 1, x|Yi|> 1)]≤ e2r0x3E[|Yi|31(x|Yi| ≥ 1)]≤Cδx,i,

and (B.11) has shown

E[eGi
1(x|Xi|> 1)]≤CRx,i,

moreover, by inequality |es− (1+s+s2/2+s3/6)| ≤ s4es∨0 andGi ≤ 2r0 when x|Xi| ≤ 1,

E[eGi
1(x|Xi| ≤ 1, x|Yi| ≤ 1)](B.16)

= E
[(
1 +Gi +G2

i /2 +G3
i /6 +O(G4

i )
)
1(x|Xi| ≤ 1, x|Yi| ≤ 1)

]

= 1+ (2r2 − ωr2)x2EX2
i − 2ωr2x3E[XiY

2
i ] +

4

3
r3x3EX3

i +O(δx,i).

Under condition (2.7), we have

δx,i ≤Rx,i ≤ x3(E|Xi|3 +E|Yi|3) + rx,i ≤ c1 +1/64.

As a result for small constant c1,

1/2≤ E[eGi ]≤ 3/2.

Thus it follows by substituting (B.13) and (B.14) into (B.6) that

E

{(
V 2
n − 1

)2
e
∑

n
i=1 Gi

}
(B.17)

≤ 2

n∏

i=1

E[eGi ]
(
x−4Rx + (xL3,n + x−2Rx)

3
)

≤Ax−2Rx exp
{
(2r2 − ωr2)x2EX2

i − 2ωr2x3E[XiY
2
i ] +

4

3
r3x3EX3

i +Aδx,i

}
,

hence the desired result (A.33) is derived. (A.31) is a special case of (A.33), with r= λ1 and
ω = 1.
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Next we prove (A.32). We have by conditional Cauchy-Schwarz inequality that
n∑

i=1

E

{∣∣∣Wi

(
Z2
i +2Zi

∑

i 6=j

Zj

)∣∣∣eλ1

∑
n
i=1 Wi

}
(B.18)

≤
n∑

i=1

E

∣∣∣WiZ
2
i e

λ1

∑n
i=1 Wi

∣∣∣+2

n∑

i=1

E

[∣∣∣ZiWi

∑

j 6=i

Zj

∣∣∣eλ1

∑n
i=1 Wj

]

≤Q1 +Q2,

where

Q1 =

n∏

i=1

E[eλ1Wi ]

n∑

i=1

E
∣∣WiZ

2
i e

λ1Wi

∣∣
Eeλ1Wi

,

Q2 = 2

n∑

i=1

E

(
|ZiWi|eλ1Wi

){
E

[(∑

j 6=i

Zj

)2
eλ1

∑
j 6=i Wj

]} 1

2
[
Eeλ1

∑
j 6=i Wj

] 1

2

.

Recalling (A.8) and (A.17), we have
n∏

i=1

E[eλ1Wi ]≤ exp{m(λ1)}eARx(B.19)

and when x satisfies (2.7) with small constant c1,

1/2≤ E[eλ1Wi ]≤ 3/2.(B.20)

Further, through an analogous proof to (B.13), we obtain

x2E[|WiZi|eλ1Wi |]
≤CE

[
(x3|XiY

2
i |+ x4Y 4

i + x3|Xi|EY 2
i + x4Y 2

i EY
2
i )e

λ1Wi
]

≤CE
[
(x3|XiY

2
i |+ x4Y 4

i + x|Xi|+ x2Y 2
i )e

λ1Wi
1(xXi > 1)

]

+CE
[
(x3|XiY

2
i |+ x3|Yi|3 + x3|Xi|EY 2

i + x4Y 2
i EY

2
i )e

λ1Wi
1(xXi ≤ 1)

]

≤CE
[
e

10λ1
9

xXi− 9λ1
10

x2Y 2
i
1(xXi > 1)

]
+Cx3(E|Xi|3 +E|Yi|3),

where in the last inequality we used the fact that ab2 ≤ a3 + b3 for a > 0, b > 0 and
x4(E[Y 2

i ])
2 ≤ 2δx,i by Lemma A.2. By (B.10). we obtain for λ1 ≤ 3/4,

E
[
e

10λ1
9

xXi− 9λ1
10

x2Y 2
i
1(x|Xi|> 1)

]
≤CE

[
e
min
{

X2
i

Y 2
i

+c0EY
2
i
,2xXi

}
1(xXi > 1)

]
.

Hence

E[|WiZi|eλ1Wi ]≤ x−2Rx,i + x(E|Xi|3 + E|Yi|3).(B.21)

Similarly, we can obtain

E
(
|WiZ

2
i |eλ1Wi

)
≤Cx−4Rx,i,(B.22)

which together with (B.19) and (B.20) gives

Q1 ≤C1 exp{m(λ1)}x−4Rxe
C2Rx .
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As for Q2, noting the bound (B.19)–(B.21) and (A.31), we have

Q2 ≤C(x−2Rx + xL3,n)
(
exp{m(λ1)}x−2Rxe

ARx
)1/2(

exp{m(λ1)}eARx
)1/2

≤C(x−2Rx + xL3,n) exp{m(λ1)}x
−1

R1/2
x eARx

≤C expm(λ1)x
−2Rxe

ARx .

Here we apply the fact x4L3,n ≤ 2δx ≤ 2Rx in Lemma A.2 to derive the last inequality. Thus
(A.32) is proved. The proof of Lemma A.4 is completed.

B.4. Proof of Lemma A.5. Assume A = 1 without loss of generality, as the proof for
general A > 0 is similar. By Cauchy-Schwarz inequality, it is obvious that S2

n ≤ nV 2
n and

hence E[e
S2
n

V 2
n+c0B2

n ]<∞. We have

E

[
e

S2
n

V 2
n+c0B2

n
1(b|Sn|> 1)

]
(B.23)

=

∫ n

0
et P
( |Sn|√

V 2
n + c0B2

n

>
√
t, b|Sn|> 1

)
dt

=

∫ n

0
et
[
P

( Sn√
V 2
n + c0B2

n

>
√
t, b|Sn|> 1

)

+ P

( −Sn√
V 2
n + c0B2

n

>
√
t, b|Sn|> 1

)]
dt.

The integral in 0< t < 1 is bounded by ebpE|Sn|p and hence is dominated by the right hand
side of (A.57) by Rothenthal’s inequality. Thus it remains to consider the integral for t > 1.
Let ν = cBn√

t
, where c is a large positive number. Denote X̂i =Xi1(|Xi| ≤ ν), then

P

( Sn√
V 2
n + c0B2

n

>
√
t, b|Sn|> 1

)
(B.24)

≤ P

( Ŝn√
V 2
n + c0B2

n

>

√
t

2
, b|Sn|> 1

)

+ P

(∑n
i=1Xi1(|Xi|> ν)√

V 2
n + c0B2

n

>

√
t

2
, b|Sn|> 1

)

≤ P

( Ŝn√
c0Bn

>

√
t

2
, b|Sn|> 1

)
+ P

( n∑

i=1

1(|Xi|> ν)>
t

4
, b|Sn|> 1

)

≤ bpe−
c
1/4
0

t

2 E

[
|Sn|p exp

{
c
− 1

4

0

√
t
Ŝn
Bn

}]
+ bpe−2t

E

[
|Sn|pe8

∑n
i=1 1(|Xi|>ν)

]

:= bpe−
c
1/4
0

t

2 E1 + bpe−2tE2,

where the second inequality is obtained by Cauchy inequality. Now we turn to estimating E1

and E2. Let An,p =
1

2(4e8)1/p max{Bn, (
∑n

i=1E|Xi|p)1/p}. Denote X̄i =Xi1(|Xi| ≤An,p),

S̄n =
∑n

i=1 X̄i and S(i)
n = Sn −Xi. Observing that

1(|Sn|> x)≤ 1(|S̄n|> x) +

n∑

i=1

1(|Sn|> x, |Xi|>An,p)(B.25)
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≤ 1(|S̄n|> x) +

n∑

i=1

1(|Xi|>
1

2
x)

+

n∑

i=1

1(|S(i)
n |> 1

2
x, |Xi|>An,p),

we have

E2 =

∫ ∞

0
pxp−1

E[e8
∑n

i=1 1(|Xi|>ν)
1(|Sn|> x)]dx(B.26)

≤
∫ ∞

0
pxp−1

E[e8
∑

n
i=1 1(|Xi|>ν)

1(|S̄n|> x)]dx

+

n∑

i=1

∫ ∞

0
pxp−1

E[e8
∑

n
i=1 1(|Xi|>ν)

1(|Xi|>
1

2
x)]dx

+

n∑

i=1

∫ ∞

0
pxp−1

E[e8
∑n

i=1 1(|Xi|>ν)
1(S(i)

n >
1

2
x, |Xi|>An,p)]dx

≤Q1 +

n∑

i=1

e8E(e8
∑

j 6=i 1(|Xj |>ν))

∫ ∞

0
pxp−1

P(|Xi|>
1

2
x)dx

+

n∑

i=1

e8(An,p)
−p

E|Xi|p
∫ ∞

0
pxp−1

E[e8
∑

j 6=i 1(|Xj |>ν)
1(S(i)

n >
1

2
x)]dx

≤Q1 + e82p exp{ t
4
}

n∑

i=1

E|Xi|p + e82pA−p
n,p(

n∑

i=1

E|Xi|p)E2

≤Q1 + e82p exp{ t
4
}

n∑

i=1

E|Xi|p +
1

4
E2,

where

Q1 =

∫ ∞

0
pxp−1

E[e8
∑

n
i=1 1(|Xi|>ν)

1(|S̄n|> x)]dx.

The second to last inequality is based on the fact that |x + u|p is a convex function with
respect to x and that there exists some large constant c such that for ν = cBn√

t
,

Ee8
∑

n
i=1 1(|Xi|>ν) ≤∏n

i=1[1 + e8P(|Xi|> ν)]

≤ exp{∑n
i=1 e

8
P(|Xi|> ν)}

≤ exp{ e
8

ν2
B2

n} ≤ exp{ t
4
}.

As for Q1, it holds that

(B.27) Q1 ≤
∫ ∞

0
pxp−1e

− x

An,p

n∏

i=1

Ee
81(|Xi|>ν)+ 1

An,p
X̄idx.

Furthermore, as |X̄i|/An,p ≤ 1, we obtain from Taylor expansion that
n∏

i=1

Ee
81(|Xi|>ν)+ 1

An,p
X̄i(B.28)
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≤
n∏

i=1

E
(
1 + e81(|Xi|> ν)

)(
1 +

X̄i

An,p
+
e2X̄2

i

2A2
n,p

)

≤C exp
{ n∑

i=1

P(|Xi|> ν) +
1

An,p
E|Xi|1(|Xi|> ν)

+
1

A2
n,p

EX2
i 1(|Xi|> ν)

}

≤C exp
{B2

n

ν2
+

B2
n

An,pν

n∑

i=1

E|Xi|p +
1

2A2
n,p

B2
n

}
≤A exp

{ t
4

}
,

which yields

Q1 ≤A (An,p)
p exp{ t

4
}
∫ ∞

0
pxp−1e−xdx(B.29)

≤A1 exp{
t

4
}
( n∑

i=1

E|Xi|p + (ES2
n)

p

2

)
.

Consequently, it follows from (B.26) and (B.29) that

(B.30) E2 ≤A2 exp{
t

4
}
[ n∑

i=1

E|Xi|p + (ES2
n)

p

2

]
.

Next we deal with E1. Recalling that |X̂i| ≤ ν =CBn/ν , we have for large constant c0

E exp
{
c
− 1

4

0

√
t
Ŝn
Bn

}
≤ exp

{ n∑

i=1

[ √
t

c
1/4
0 Bn

E|Xi|1(|Xi|> ν)(B.31)

+ exp{ C

c
1/4
0

} t

2c
1/2
0 B2

n

EX2
i

]}

≤ exp

{ √
tB2

n

c
1

4

0Bnν
+ exp

{ C

c
1/4
0

} t

2c
1/2
0

}

≤ exp
{ t
4

}
.

Denote Ŝ(i)
n = Ŝn − X̂i and

Q2 =

∫ ∞

0
pxp−1e−x/a

E

[
exp

{
c
− 1

4

0

√
t
Ŝn
Bn

+
S̄n
An,p

}]
dx.

By a similar procedure to (B.26)–(B.30), we have for large c0

E1 =

∫ ∞

0
pxp−1

E

[
exp

{
c
− 1

4

0

√
t
Ŝn
Bn

}
1(|Sn|> x)]dx

≤Q2 +C1

n∑

i=1

E

[
exp

(
c
− 1

4

0

√
t
Ŝn
Bn

)]
·E|Xi|p

+ 2pec/c
1
4
0

n∑

i=1

E|Xi|p
Ap

n,p
·E
[
|S(i)

n |p exp
(
c
− 1

4

0

√
t
Ŝ
(i)
n

Bn

)]
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≤Q2 +C2 exp{
t

4
}

n∑

i=1

E|Xi|p +
1

4
E1.

Moreover, it follows from Taylor expansion that

Q2 ≤C(An,p)
p

n∏

i=1

E

[(
1 +

√
t

c
1/4
0 Bn

X̂i +
tec/c

1/4
0

2c
1/2
0 B2

n

X̂2
i

)(
1 +

eX̄i

An,p

)]

≤Cet/4(An,p)
p ≤Cet/4

[ n∑

i=1

E|Xi|p + (ES2
n)

p/2
]
.

Consequently,

E1 ≤C exp{ t
4
}
[ n∑

i=1

E|Xi|p + (ES2
n)

p/2
]
,

which together with (B.30), (B.24) and (B.23) gives the result (A.57). The proof is completed.
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