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Let {(X;,Y;)}i be a sequence of independent bivariate random vec-
tors. In this paper, we establish a refined Cramér type moderate deviation
theorem for the general self-normalized sum > 7 X;/(>°" YZ-2)1/ 2,
which unifies and extends the classical Cramér (1938) theorem and the self-
normalized Cramér type moderate deviation theorems by Jing, Shao and Wang
(2003) as well as the further refined version by Wang (2011). The advan-
tage of our result is evidenced through successful applications to weakly
dependent random variables and self-normalized winsorized mean. Specifi-
cally, by applying our new framework on general self-normalized sum, we
significantly improve Cramér type moderate deviation theorems for one-
dependent random variables, geometrically 5-mixing random variables and
causal processes under geometrical moment contraction. As an additional
application, we also derive the Cramér type moderate deviation theorems for
self-normalized winsorized mean.

1. Introduction. Let X, X5, -, X,, be independent random variables with EX; =0
and EX? <oofori>1.Set B2=Y" EXZ,

n n B 1 n
Sa=Y_X; Vi=) X7, X:EZXZ-
=1 i=1 =1

1 _
and 62 = - D (X - X)
n_

i=1

The self-normalized sum is defined by S,,/V,, and is closely related to the widely-used Stu-
dent’s ¢ statistic ¢, = S,,/(y/n 6,,) in the sense that

P(t, > x) = P(S,/Vy > z[n/(n + 22 — 1)]Y/?).

Therefore, to investigate the distribution of Student’s ¢ statistic is equivalent to consider that
of the less complex self-normalized statistic.

The past three decades have witnessed the flourishing development of asymptotic
theory for self-normalized sums of independent random variables. Regarding the suffi-
cient and necessary conditions for the self-normalized central limit theorem, we refer to
Giné, Gotze and Mason (1997) and Shao (2018) for independent and identically distributed
(i.i.d.) random variables and general non-i.i.d. random variables, respectively. Specifically,
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for the i.i.d. case, the former paper showed that S,,/V/, is asymptotically standard normal if
and only if the common distribution is in the domain of attraction of the normal law. Basically,
there are two ways to measure the accuracy in normal approximation. One method is the abso-
lute error, which concerns the celebrated Berry-Esseen bound and Edgeworth expansion. See
Bentkus and Gotze (1996), Bentkus, Bloznelis and Gotze (1996) and Wang and Jing (1999)
for Berry-Esseen bounds and Hall (1987) for Edgeworth expansion. Another method is the
relative error, which estimates the ratio of the tail probabilities, typically including the Cramér
type moderate deviations. Shao (1999) established the following self-normalized Cramér type
moderate deviation result for i.i.d. random variables. If E|X; |> < oo, then

P(S,, > zV,,)

—a@) !

holds uniformly for 0 < z < o(n'/%), where ®(z) is the standard normal distribution func-
tion. Jing, Shao and Wang (2003) further extended the result to general independent random
variables. In particular, they obtained that if E| X; |3 < oo for ¢ > 1, then there exists an abso-
lute constant A > 0, such that

P(S, > xV,,) i~ 3/R3
— - 1| <A1 E|X;|°/B

(1.1

holds uniformly for 0 <z < B, (31 E|X;]%)~1/3.
In addition, Wang (2011) corrected the skewness in normal approximation and proved that
if E|X;|® < oo for i > 1, then there exist positive constants Ay and Cj such that
P(Sy > 2V, +cBy)
1—®(zx+ )]V,

e [1 + Oy ((1 + ) zn:E|Xz|3/Bg>} )

(1.2)

holds uniformly for |c| < z/5 and for all 0 < z < 1B, (max; E|X;[*)~ 1/3 and z <
CoB3 /> " | E|X;|3, where |O1] < Ay, |O2] < Ap and

U, = exp [72(4% - 2>x32EXf’/B§],
Apz=(1+2z)? 3ZE\X\3 (1+2)|X;| > By,)]

+(142)'B* ZE[|XZ-|4]1((1 +2)|X;| < Bn)],
=1

with 7 = (1 + ¢/x). Especially, if X1,..., X, are i.i.d. random variables with EX{ < oo,
then (1.2) 1mphes there exist positive constants A and Cy depending on EX? and EX{ such

that
P(S, >V, SE[X3 1 1+az)?
PSn > 2Vn) xn):exp __ TEX] 21] 5 [1+01 +$+( o) ;
1—®(x) 3vn(E[X2])3/ vn n
uniformly in 0 < z < C’Onl/4, where |O;] < Ap. Observe that in the i.i.d. case, the classical
self-normalized Cramér type moderate deviation presented in (1.1) gives a convergence rate




REFINED GENERAL SELF-NORMALIZED MODERATE DEVIATION 3

of (14 z)3/y/n and the corresponding range of convergence 2 = o(n'/%). Thus, by speci-
fying the skewness correction term W, (1.2) can improve the result of Jing, Shao and Wang
(2003) in terms of both the convergence rate and the range of convergence when the higher
fourth moments exist.

It is worth mentioning that the moment conditions for self-normalized Cramér type moder-
ate deviation theorems are much weaker than those in the classical theorems for standardized
sums. As a result, to account for robustness against heavy-tailed data, the self-normalized
sum would be recommended in real-world applications. We refer to de la Pefia, Lai and Shao
(2009) for a systematic introduction to the theory and statistical applications of self-
normalized statistics.

Due to its rigorous control on the ratio of tail probabilities, the self-normalized Cramér
type moderate deviation has been successfully applied in high-dimensional statistical anal-
ysis, including large-scale multiple testing (Fan, Hall and Yao, 2007; Liu and Shao, 2010,
2013), signal detection (Delaigle and Hall, 2009), classification (Fan and Fan, 2008) and fea-
ture screening (Chang, Tang and Wu, 2016) among others.

Most of the existing works have focused on the classical self-normalized sum, that is,
S X /(0 X2)'/? for independent random variables { X;}7_,. Yet, in some scenarios,
the sequence used for normalizing in the denominator could be different from the numera-
tor, which occurs for a variety of commonly used studentized nonlinear statistics such as the
studentized U-statistic and the studentized L-statistics. Therefore, investigations into general
self-normalized processes beyond the classical form are imperative. Shao and Zhou (2016)
attempted to extend the Cramér type moderate deviation theorem to a more general setting,
that is, (37, Xi + D1n)/ (1, X2)(1 + Day,))'/2, where the remainders Dy,, and Do,
are measurable functions of {X;}" ; but negligible. Our present work will establish a funda-
mental framework in Theorem 2.1 on the Cramér type moderate deviation for a more general
self-normalized form of "7 | X, /("1 Y2)1/2, where {(X;,Y;)}?, is a sequence of in-
dependent bivariate random vectors and X; and Y; could be different from each other. It is
worthwhile to mention that our Theorem 2.1 can cover not only the classical Cramér type
moderate deviation for standardized sums by Cramér (1938), but also the self-normalized
counterparts by Jing, Shao and Wang (2003) and Wang (2011).

Our investigation into the general self-normalized sum is also motivated by seeking to
develop sharper self-normalized Cramér type moderate deviation results for weakly depen-
dent random variables. Though Cramér type moderate deviation theory has been well studied
for independent random variables, the theory for dependent data remains largely underde-
veloped. The biggest challenge is that the classical theory for independent random variables
cannot be directly applied due to dependence. Chen et al. (2016) made the first attempt to
develop the theory for self-normalized sums of dependent random variables with geometri-
cally decaying dependence. However, their result can be further improved by applying our
framework on the general self-normalized sum. The key observation is that after dividing
the weakly dependent random variables into consecutive big blocks and small blocks, its
self-normalized sum can be approximated by a general self-normalized sum of independent
bivariate random vectors. Therefore, Cramér type moderate deviation theorems for the self-
normalized sums of weakly dependent random variables can be established based on our
fundamental theory on the general self-normalized sum. More details will be presented in
Section 3.

The rest of the paper is organized as follows. Our framework on general self-normalized
Cramér type moderate deviation is presented in Section 2. Section 3 shows applications to
the self-normalized sums of weakly dependent random variables under one-dependence, ge-
ometrically S-mixing condition, and geometric moment contraction. Section 4 presents an
additional application to studentized winsorized mean that naturally takes the form of a gen-
eral self-normalized sum. Section 5 is devoted to proofs of the theorems in Sections 2—4.
Other technical proof details are included in the Supplementary Material.
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2. Main Results. Let (X1,Y7),(X2,Y3),...,(X,,Y,) be independent bivariate random
vectors satisfying

n n
(2.1) EX;=0fori>1 and » EX7=1=) EY;
i=1 i=1
We remark that for the convenience of presentation, {X;} and {Y;} are standardized so
Y EXE=1=3", EY;2. In other words, one should think of X; as X, ; and similarly
Yias Y, ;. Let

2.2) =YX V2=V and T,=2r
1=1 i=1 n

We first propose an exponential moment condition as follows. Suppose there exists some
constant ¢g > 0 such that for = > 0 satisfying (2.7),

. x2
ming —s———%,
(2.3) Ee {Y%%W < o0.

The above moment condition links X; with Y; and shows how they interact with each
other. In particular, it is automatically satisfied for the classical self-normalized sum with
Y =X;.

The following notations will be used throughout the paper. Define

n

(2.4) Lyn=)Y_ (BIX:[*+E[V;*),
i=1

bui = (14 2)° (B[ XPL(L+2) X > D] + B[V PL((1+2)Yi] > 1)])

+ (1) (BN +2)X] < D] + B[V +2)Y] < 1)]),
2

Tzi=E [exp{min (WJQUXZ')}M](I +2)X;| > 1)] ,

n n
Rx,i = 5w,i + Tz, 0p = § 5:2,@'7 Ty = § Txis and R, =0, +1,.
i=1 =1

THEOREM 2.1. Assume (2.1) and (2.3) are satisfied. In addition, E|X;|> < co and
E|Y;|? < oo for i > 1. Then there exist absolute positive constants 0 < c; < 1/4 and A >0
such that

(2.5) P(S, > aVp +c) =[1 — ®(x + )] U 9 (1 4+ 09 (1 4 7) L3 ),

where
4 - " 1 c
* 3 3 3 2 v2 —— —
U* = exp {w <§’y ;:1 EX; — 2y ;:1 E[X;Y; ])} and = 2(1 + :E)7

uniformly for |c| < z/5 and for all x > 0 satisfying
(2.6) (1+2)L3, <e1, 2R, <e,

1 1
1A
2.7) and x < 12V T30 MaXTqg <ec,
[maxi(E]Xi\?’ —i—E\Y;\?’)] ¢

where |O1| < A and |O2| < A.
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Theorem 2.1 unifies the classical standard and self-normalized Cramér type moderate de-
viation theorems as well as the refined version by Wang (2011). The assumption (2.3) is
satisfied for a wide class of statistics, including the block sums of weakly dependent ran-
dom variables and the self-normalized winsorized mean. More details will be provided in the
proof of Theorems 3.1-3.3 and 4.1.

The following corollary is a straightforward application of Theorem 2.1 to the classical
standardized sum of independent random variables. The proof will be given in Section A.18
in the Supplementary Material.

COROLLARY 2.1. Let X1,..., X, bei.id. randomvariables with EX; = 0 and E[X?] =
o2. Denote S,, = Sy Xi. If there exists a positive constant to such that EetXt < oo for
|t| < to, then we have

oy M (PR (2! L)

holds uniformly for 0 < z < O(n'/%).

3. Applications to Weakly Dependent Random Variables. The Cramér type moder-
ate deviation theory has been well studied for independent random variables, yet there are
few results available for dependent data. The novel work of Chen et al. (2016) made the first
attempt to develop the theory for self-normalized sums of weakly dependent random vari-
ables satisfying the geometrically 5-mixing condition or geometric moment contraction. In
this section, we will further improve their results by applying our fundamental framework
on the general self-normalized sum. Before that, we will start with a Cramér type moderate
deviation theorem for self-normalized sums of one-dependent random variables. The reason
to first investigate under one-dependence is two-fold. First, one-dependence is the simplest
scenario of dependency and the result for one-dependent random variables can be applied to
m-dependence, where m could also go to infinity. Second, many weakly dependent random
variables can be approximated by some one-dependent random variables. A typical example
includes the block sums of random variables satisfying geometric moment contraction, which
will be presented in Section 3.3. Therefore, the following Theorem 3.1 under one-dependence
lays the foundation for Theorem 3.3 under geometric moment contraction.

3.1. Cramér type moderate deviation under one-dependence. Let £1,€o,... be one-
dependent random variables, which means for 7,5 > 1, &; is independent of ; if |j — i| > 2.
Put

u - S EE i
(3.1) Sp=Y &, VZ=) & p,==E= 2000
2 2 S EE?

Note that |p,| < 1/2. Moreover, in many applications where weakly dependent sequence
can be approximated by some one-dependent random variables, the covariances E&;&; 11 are
negligible compared to the variables Efg due to weak dependence, hence p,, — 0 as n —
oo. Therefore, p, can be moved to the remainders and the limiting distribution will still
be standard normal. One can find more details in the proof of Theorem 3.3, which obtains
Cramér type moderate deviation result under geometric moment contraction by applying
Theorem 3.1.

Under existence of the fourth moment, we have the following theorem for self-normalized
sums of one-dependent random variables.
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THEOREM 3.1. Assume that E&; = 0, ng < aj and Efiz > a2 for 1 <i<mnand p, >
p for some p > —1/2. Denote a = a1 /as. Then there exist positive numbers ag and A(p)
depending on p such that

2
(3.2) P(S,, > zV,) = 14+ 01a4 (1+m) )

nl/4

-2 (

holds uniformly for z € (0,apa~2n7), where |O1] < A(p).

The proof of Theorem 3.1 relies on the big-block-small-block technique and an application
of Theorem 2.1. The main idea is to approximate the self-normalized sum of one-dependent
random variables by a general self-normalized sum of independent random vectors based on
the big blocks. In more details, let the length of big blocks be I = [n?] for 0 < a < 1, where
[z] denotes the integer part of = for any = > 0, and the length of small blocks be only 1.
Denote k= [n/(l + 1)]. For 1 < j < k, we define the j-th big block by

(3.3) Hi={i:(j-DI+1)+1<i<jl+1)—-1}
and the sums over j-th big block by
(3.4) Xj=Y &and V7= &

1€ H; 1€H;

Observe that by this construction, the big-block sums {X }k 1 and {Y }k , are both se-
quences of independent random variables, because {;}7_, are one- dependent and the ad-
jacent big blocks H; and Hj,| are separated by a random variable &;(41). Since the
big blocks contain (1 — n~%) proportion of the random variables in {&;}7 ,, we can ap-
prox1mate the self-normalized sum S,,/V;, of {¢;}7_; by the general self-normalized sum
SOk i1 X5/ (F =1 Y] Y?)!/2. The crucial quantity 7, ; can be separated into two self-normalized
sums of mdependent random variables due to one-dependence and thus can be bounded by
using Lemma A.5 in the Supplementary Material. Therefore, Theorem 3.1 can be proved by
applying Theorem 2.1 and calculating the error terms involved. More details of the proof will
be provided in Section 5.2.

Compared with the classical result (1.1) for independent data, one-dependence results in a
narrower zone of convergence and a slower convergence rate. Moreover, (3.2) can be easily
extended to general m-dependent random variables, where m could depend on n and go

to infinity. Indeed, if Z1,..., Z, are m-dependent and suppose b =n /m is an integer for
simplicity, we define £; = >°7™" \(j1ym Zi for L <j <b, then &y,...,&, are one-dependent

random variables and Theorem 3.1 can be applied.

3.2. Cramér type moderate deviation under 5-mixing. In time series, asymptotic inde-
pendence conditions such as mixing conditions are usually proposed to replace independence,
among which -mixing is an important dependent structure and has been connected with a
large class of time series models including ARMA models, GARCH models and certain
Markov processes. This subsection provides a Cramér type moderate deviation theorem for
block-normalized sums of geometrically 5-mixing random variables, which improves the
result by Chen et al. (2016).

Let {X;}_, be a sequence of random variables. Let o’ __ and 077, be o-fields generated
by {Xi}i1<i<t and {X; }i>¢4m, respectively. The -mixing coefficient is given by

(3.5) B(m) = sngsup{lP(Blaioa —P(B)|: B€oiy}-
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We say {X;}i>1 is geometrically -mixing if §(m) admits an exponentially decaying rate,
that is, there exist positive numbers a1, ae and 7 such that
(3.6) B(m) < aje” =™,

To account for dependence, the block technique is naturally used to estimate the variance
of sums of dependent random variables (see Chen et al. (2016)). Set l = [n®] + 1 for 0 < a <
land k= [n/l] . For 1 < j <k, define the j-th block and corresponding j-th block sum by
(3.7) Hy={i:l(j-1)+1<i<lj} and Y;=) X

i€H;

respectively. The block-normalized sum is then defined by
k
2j=1Yj
—
Vi1 Y

THEOREM 3.2. Let {X;}" | be a [5-mixing sequence satisfying (3.6). Assume EX; =
0 and there exist positive numbers p; and ps such that E|X;|" < upi for r > 4 and
E(Zf;t X:)2 > pdt foralli > 1,5 >0,t > 1. Then, for 0 < a < 1 and T > 0, there exist
positive numbers A and dy depending on aq, as, p1, 2, o, T and r such that,

]P’(Tkzw)_l‘<A<(1+w)2 (1+x)2logn )
1—®(x) - no pmin{(1—a)/4,ar/2}

uniformly in 0 < z < dgmin{n®/2, (logn)~1/2pmir{(1=a)/8,ar/4}1

(3.8) T =

(3.9

As for the choice of «, for any given 7, we can always choose a such that 1 — o < 2a7,

that is, o > H% To optimize the convergence rate and the range of = in (3.9),

(i) when 7> 2, let a = %, then

2
(3.10) P > 7) :1+O<W)

1—®(x) nl/s

uniformly for x € (0, d; (logn)~1/2n1/10);

(i) when 7 < 2, let & = 1755=, then
P(T}, > 1 2]
(3.11) le—i—O(w)
1—®(x) nZa+en

uniformly for z € (0, dy (logn)~Y/2n i),

REMARK 3.1. We now compare our result with Theorem 4.2 in Chen et al. (2016). They
proved that given E| X;|" < co for r > 3 and the same assumption (3.6),

P(T > ) (142)2  (1+z)*
e 1= Al ]

uniformly in 0 < z < do(min{(logn)~4/5n(=0/10 pat/2 na/2V) (We have to mention that
(14x)?
e
the corresponding condition x < dyn®/2.) When (1 — &) > 2ar, our results might be worse
for some choices of a. However, when (1 — «) < 2ar, our results improve theirs in terms of
both the convergence rate and the corresponding range of x. The improvement is achieved by
applying our framework for general self-normalized sum and correcting the bias to normal
approximation by specifying the skewness term V.

(3.12)

and

the original version of Theorem 4.2 in Chen et al. (2016) missed the error term
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The proof of Theorem 3.2 again builds on the big-block-small-block technique. Recall that
for1 <j <k Y;=3% . H, X is a block sum defined in (3.7). We first apply big-block-small-

block technique to separate the sequence {Yj}l?zl into consecutive big blocks and small
blocks. Let the size of big-blocks be m; = [no‘lf for 0 < oy <1 — « and the size of small-
blocks be only 1. Denote k1 = [k/(m1 + 1)]. For 1 <wu < ky, define the u-th big block by

(3.13) Li={j:m+1)u-1)+1<j<(mg+1)u—1},
and the sums over u-th big block by

(3.14) W= Y m=) Y,

J€l jel,

Then the self-normalized sum T}, = Z?:l Y;/ (Z?:l Yj?)l/ 2 can be approximated by the
general self-normalized sum Zﬁ;l Cu/ (Zﬁ;l n2)'/? constructed on the big blocks. How-
ever, unlike the big-block sums under one-dependence, the big-block sums {(Cuanu)}ﬁlzl

are not independent under S-mixing assumption in (3.6), but weakly dependent. Therefore,

Theorem 2.1 can not be directly applied. Note that the adjacent random vectors ((,,7,,) and

1+1 1 1+1 +1
(Gut1:ur1) dependon {¥;} ™ F D80 - and {yj 0 D0 D

defined in (3.7) is a block sum of {X;} and by the $-mixing assumption on {X;}, we can
see the -mixing dependence coefficient between ((y,7,) and (Cy+1,7Mu+1) is bounded by
O(e=%"""), which converges to 0 as n — co. According to Lemma 5.3 (Berbee, 1987) pre-
sented in Section 5.3, the weakly dependent random vectors {(, nu)}z;l can be replaced
with independent random vectors {(Eu, ﬁu)}ﬁ;l that have the same marginal distributions,
with probability 1 — O(k1e~%2"""). Moreover, the crucial quantity r,, can be approximated
by two self-normalized sums of independent random variables due to the S-mixing assump-
tion (see Lemma 5.3) and the block technique. Consequently, our main result in Theorem 2.1
can be applied to the general self-normalized sum S% . C,/(3FL 72)1/2. Detailed proof
will be given in Section 5.3.

1, respectively. Since Y;

3.3. Cramér type moderate deviation for causal processes under geometric moment con-
traction (GMC). The GMC (see Wu and Shao (2004), Hsing and Wu (2004) and Wu (2005,
2011)) is satisfied by many non-linear time series models including various GARCH models
that are commonly used in statistics, econometrics and engineering. In this subsection, we
present a Cramér type moderate deviation theorem for block normalized sums of random
variables satisfying GMC.

Let {&¢ }4ez be i.i.d. random variables and define o-fields %, = o(...,&4_1,¢). Suppose
that {X; = G;(.%;) }i>1 is a causal process with G;(-) being a measurable function such that
X, is well-defined. Let {¢} };cz be an independent copy of {&; }+cz and we similarly define
Fi=o0(....e0_1,6f).

DEFINITION 3.1.  (GMC). Assume that E|X;|" < co for all i > 1 with r > 2. Define the
functional dependence measure by

(3.15) Ar(n) =sup [ X; = GilFinsCimnits 580,

where || - ||, = (E| - |")Y/". We say {X;};>1 satisfies GMC if there exist positive constants a,
as and 0 < 1 <1 such that

(3.16) A, (n) <aje” ™",
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Note that the GMC property (3.16) implies { X };>1 forgets the past %y =0 (...,e_1,€0)
geometrically fast.
REMARK 3.2. Define another functional dependence measure as

(3.17) 0r(n) =sup||X; — Gi(...,€i—n—2,€i—n—1,Ej—pn,Ei—nt1, - -+ &) |-
1
The property (3.16) is equivalent to 6,.(n) < a e~%"" for some positive constants al and ak,.

Now we assume {X;}” ; is a sequence of random variables with
(3.18) EX; =0, E|X;[* < 0o,

for all ¢ > 1. Write Si, ,, = Zfiﬁl X;. Assume there exists a positive number w; such that
forany k> 0,m > 1,

(3.19) E(S} ) = wim.

As with the procedure for S-mixing random variables, we construct the block-normalized
sum for random variables satisfying GMC. Let the block size m = [n®] for 0 < o < 1 and
k= [n/m]. For 1 < j <k, define the j-th block and the j-th block sum by

Hyj={i:m(j—1)+1<i<mj} and Y;=) X
i€H,
The block-normalized sum is then given by
k
2 j=1Y]

Sk
VEL Y

THEOREM 3.3.  Assume {X;}!' | is a causal process satisfying (3.16), (3.18) and (3.19).
Then we have for 0 < o < 1 and T > 0, there exist positive numbers A and dy depending on
ai,as, w1, o and T such that

(3.20) T =

1+22 1422 )

(3.21) P(Ty > 2) = [1 — ®(x)] (1 +O1— o+ )

uniformly in 0 < z < dy min{n®/2,n®/2 n(1=9/8} ywhere |0O;] < A.

Corollary 4.3 in Chen et al. (2016) stated that (3.12) also holds for the self-normalized
block sum of GMC random variables. Compared with their result, our convergence rate and
the associated converging range of = significantly improve theirs.

The main idea of our proof for Theorem 3.3 is to approximate {Yj};“:1 by one-dependent
random variables and then apply Theorem 3.1. Define

(3.22) Y; =E(Yjler,m(j —2) +1 <1< mj)
and
-
3 " Y
(3.23) T, = 2=1Ys

k -~ ?
i Y2
where m = [n?]. Since Y; =} .. , Xi belongs to Fp,; and depends weakly on .7, ;o)

by the GMC assumption (3.16), it is intuitive that ff] is close to Y. In particular, we can
prove ||Y; — Y|, < ayme™*"™7. Therefore, the self-normalized sum 7}, of {Yj}gf:1 can be
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well approximated by the self-normalized sum T}, of {f/]};“:l Moreover, since {; }+cz are

1.i.d. random variables, it is easy to see {f@}le are one-dependent. Consequently, Theorem
3.3 can be proved by applying Theorem 3.1 and controlling the errors caused by the approx-
imation by one-dependent random variables. We will present the detailed proof in Section
54.

4. Applications to self-normalized winsorized mean. Although the sample mean has
always been a prominent unbiased estimator for a location parameter, it has the troubling
disadvantage of being heavily influenced by gross outliers. Yet, robustness is often a desir-
able property, especially in real-world applications. Thus robust alternatives, typically includ-
ing the trimmed mean (Rothenberg, Fisher and Tilanus (1964)), the winsorized mean (Dixon
(1960), Huber (1964)), and the Huber estimator (Huber (1964, 1973)), are imperative to make
more reliable statistical inference for unknown parameters. Suppose we have i.i.d. observa-
tions Y7, Ys, ..., Y, with common distribution Y and

p=E[Y] and o2=Var(Y).

For a thresholding parameter 7 > 0 that determines the tradeoff between bias and robustness,
the winsorized mean is defined by

n
(4.1) fw =n"1> F(Y),
i=1
where
4.2) fl@)=zl(z|<7)+7l(z>7)—7L(x < —7).
The trimmed mean is defined by
n
4.3) fir=ci Y Vi{[Yi| <7},
i=1
where ¢, , = > - 1{]Y;| < 7}. Moreover, the Huber loss (Huber (1964)) is given by
1
§u2 if ju| <,
(4.4) 0 (u) = ,
2 .
T|u| — 37 if Ju| >,

which is a compromise between square loss and absolute loss. The Huber estimator is then
defined as

(4.5) fug = argmin Yy £-(Y; — pu).
HER

These robust estimators are common in reducing the impact of outliers and are all asymp-
totically equivalent to the sample mean when the associated tuning parameter 7 tends to
infinity. Compared with the Huber estimator, the trimmed mean and the winsorized mean
have explicit formulas and therefore are easier to be applied in real-world applications. It
is well-known that these robust estimators are asymptotically normal under some regularity
conditions. Recently Zhou et al. (2018) obtained a Cramér-type moderate deviation theorem
for the Huber estimator when allowing the tuning parameter 7 to diverge with the sample size
n in some regime, and they applied the result to establish theoretical guarantees for the false
discovery rate in multiple testing procedure for population means. However, the statistic they
investigated depends on the unknown variance, which needs to be well estimated in practice.
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4.1. Cramér-type moderate deviation for self-normalized winsorized mean and trimmed
mean. In this section, we will provide Cramér-type moderate deviation theorems for the
self-normalized winsorized mean defined in (4.6) and self-normalized trimmed mean defined
in (4.9), as an application of our main Theorem 2.1. The self-normalized winsorized mean
and trimmed mean are asymptotically pivotal statistics in the sense that their asymptotic
distributions do not depend on unknown parameters as (n,7) — (00, 00), therefore they can
be directly used in the multiple testing of population means with theoretical justification.
In addition, we will see our results for self-normalized winsorized mean and trimmed mean
outperform that for the Huber estimator established in Zhou et al. (2018).

Since the winsorized mean and trimmed mean have explicit expressions as presented in
(4.1) and (4.3), we can easily construct the studentized counterparts by plugging in the sample
variance. The studentized winsorized mean is given by

_ i (f(Ya) — )

Vi (F(Yi) — aw)?
and the studentized trimmed mean is given by
Sy} -

Vi ien VY[ <7} — fir)?
where V' = {1 <i <n:|Y;| <7}. Observe that

o YLUM) -
U VL) w2
2 (f (Vi) — ) Stn

(4.6) S

4.7) Urn

VI (00 — 7 = (S, () - ) T-Rs07

where ST, is the self-normalized winsorized mean defined as
Tn .
\/Z?:I(f(}/;') —p)?
Similarly, we have for the studentized trimmed mean that
Ut
’ 1— 1 (U* )2

Cr.on Tn

(4.8)

where Ujf’n is the self-normalized trimmed mean defined as
. Y, H{|V;| <7} —
(4.9) Ur, = iy ViH{Yil <7} — ) 5
V2 ien VY[ <7} —p)

and ¢, ,, = > 1{]Y;| < 7}. Since the function z /(1 — %3:2)1/2 is an increasing function
forO0<x < nl/z, we have

P(Sr > o) =P(S,, > %)

and




12 L. GAO, Q.-M. SHAO AND J. SHI

Therefore, to investigate the limiting properties of S;,, and U, is equivalent to investigate
that for the simpler self-normalized statistics S7 ,, and U ,,, respectively.

Before stating our Cramér type moderate deviation results, let us first present how the self-
normalized winsorized mean and trimmed mean connect with the general self-normalized
sum investigated in our main Theorem 2.1. First for the self-normalized winsorized mean,
though (4.8) presents the form of a self-normalized sum of independent random variables
for ST ,,, the expectation of f(Y) — p is slightly deviated from 0 and needs to be calibrated.

Denote
A=Ef(Y), o}=E(f(Y)-0)? o3 =E(f(Y)-n

Then we can write
e (f(Y)—f)  /n(p—p)

* \/501 o1 01
St = 2
’ P (f (i) —p)? 02
noz
Sn —C 01
4.10 = L
(4.10) T

where S,,, V;, and c are denoted by

~fY) - e N~ (YD) =)
S, =3 LBy U
; Vnoy ; no?
and oo Ynlp—p)
01
Therefore,
. o (Sn—c _ 03
IP)(ST,n>:E)—IP’< v >0_—1:L">.

Note that the random variables involved in S, and V,, are different, which means the existing
results for classical self-normalized sums cannot be directly applied.

As for the self-normalized trimmed mean, note that in the numerator, >, (Y;1{|Y;| <
T} — p) in (4.9) is equal to Y ;" | (V; — p)1{|Y;| < 7}. Similarly in the denominator,
Sien(Yil{|Y;| <7} — p)? is equal to 37 [(V; — ) 1{|Y;] < 7}]%. Thus we have

. Y (Y- wi{vi <7}
ST Y — wI{[Yi[ < T2

Denote
po=E[(Y = w1{|Yi| <7}, of =E[(Y — w1{|Yi| <7} — pol?,
and o} =E[(Y — p)*1{|Y| < 7}].

Similar to the self-normalized winsorized mean, we can obtain

Se -4
Vi

P(UZ, > ) = IP(

where

n

n n

i=1 Vnos 7
Vo

03

and 6=

04
> %),

03

n

=3 WU —p0 (o g [ = LAY <7}

2
no
i=1 4
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Consequently, our result for general self-normalized sums in Theorem 2.1 can be directly
applied to ST, and U, to derive the following bias-corrected Cramér-type moderate devi-
ation theorems for the self normalized winsorized mean and trimmed mean under the fourth
moment.

THEOREM 4.1.  Assume E[Y*] < co. Then there exist an absolute positive constant ¢y
and positive constants ca and A depending on o, E[|Y |3] and E[Y'*, such that for

4.11) 7> ern/S max{(E[YY])/? /o, (E[Y*]/0)"/3},
it holds that
* ‘TgE(Y - :u)3
P(S7,, >z)=[1— ®(x)] exp{ — 3\/_7}
1+zY) (Q+a2)y/n (1+x)
4.12) < [1+o (= s NG )]

uniformly for x € (0,cy min{n/*,73n=2}), where O is a bounded quantity satisfying
|O1| < A. Similar result holds for (S}, < —x).

THEOREM 4.2. Under the conditions of Theorem 4.1, the same result as (4.12) holds for
U:,.

Observe that under the fourth moment, the general framework Theorem 2.1 enables us to

pin down the bias-corrected term exp{—%} which depends on the skewness of the
underlying distribution. After correcting this skewness in normal approximation, the conver-
gence rate and the converging range significantly improve that given in Theorem 4.3, where
only third moment is assumed.

The choice of 7 should be determined by taking both convergence rate and robust-

ness of estimator into account. We observe from (4.12) that the ratio (S}, > z)/[(1 —

@(m))exp{—%}] converges to 1 for z € (0,0(min{n'/4 73n=1/2})). The widest

possible range z € (0,0(n'/*)) can be achieved by choosing 7 > O(n'/*). When 7 <
O(nl/ 3), the larger T is, the faster rate of convergence and wider range of = can be ob-
tained. Yet, once 7 exceeds O(nl/ 3), our result reduces to the bias-corrected Cramér-type
moderate deviation for the classical self-normalized sample mean (see Theorem 1.1 in
Wang (2011)), which is reasonable because the winsorized mean and trimmed mean are
asymptotically equivalent to the sample mean as 7 — oo. It is worth mentioning that when

O(n'/%) <7 < O(n'/?), the ratio P(S5,, > )/ ([1 — ®(x)] exp{— 220 }) converges to

1 at the rate of O((1 4 x)*n =" + (1 4 x)y/n7~3) uniformly for 2 € o(min{n'/%, 73n=1/2}).
In this regime of 7, though the convergence rate of winsorized mean and trimmed mean could
be slightly slower than that of the classical self-normalized sample mean and the ranges of
x for convergence could be narrower, the winsorized mean and trimmed mean provide ro-
buster inference. We will provide the proof of Theorem 4.1 in Section A.11 and the proof of
Theorem 4.2 in Section A.12.

Theorem 2.3 in Zhou et al. (2018) is closely related to ours. They established a Cramér-
type moderate deviation result for Huber estimator iz defined in (4.5) by using a Bahadur
representation for the Huber estimator. Theorem 2.1 in their paper reveals that fg — p
is asymptotically close to n=*>"" | f(Y; — p), where f(-) is defined by (4.2). There-
fore, it is easy to see that the Huber estimator [i is close to the winsorized mean [y =

n~t i, f(Y;) as 7 — co. Theorem 2.3 in Zhou et al. (2018) for the Huber estimator can
be restated as follows. The notation a,, < b,, means a,, = o(b,,) as n — 0.
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REMARK 4.1.  Assume E|Y|? < oo. Zhou et al. (2018) proved for n'/* < 1 < n'/? that
P(vno iy — p| > )

2(1 - ®(x))
(Viogn+x)? 1+x (1+2)vn o
“4.13) =1+ 0(1){ NG RESEY T R te O(TZ)}

uniformly for 0 < x = o(min{\/n/7,72/\/n}).

Compared to their condition n'/* < 7 < n'/2, our condition 7 > O(n'/%) is less restric-
tive. Moreover, when 7 >> n'/4, both of our convergence rate and the associated converging
range of x improve theirs. Our improvement mainly relies on the explicit formula of the
self-normalized winsorized mean presented in (4.10) and our fundamental result for gen-
eral self-normalized sum established in Theorem 2.1. In addition, since the higher moment
E[Y*] < oo is assumed, after correcting the bias in normal approximation, the convergence
rate and the associated range of = could be significantly improved.

The common downside of our bias-corrected result in Theorem 4.1 and the normal ap-
proximation for Huber estimator by Zhou et al. (2018) in Remark 4.1 is that the limiting dis-
tributions depend on unknown parameters. In real-world applications, if reliable estimations
for the unknown parameters are unavailable, we can directly use normal approximation for
the self-normalized winsorized mean presented in the following theorem, where only third
moment is required and the limiting distribution does not depend on any unknown parame-
ters.

THEOREM 4.3. Assume E|Y|? < co. Then there exist absolute positive constants cy, cy
and A such that for

(4.14) 7> ern  max{E|Y|? /o2, (E|Y | /0)'/?},
it holds that

(4.15)

P(57, > ) (1+23)E|Y? N (1+z)ﬁE\Y\3)
1—®(x) a3\/n oT? ’

uniformly for z € (0,comin{n'/%¢3/E|Y|3, 720 /(v/nE|Y|*)}), where Oy is a bounded
quantity satisfying |O1| < A. Similar result holds for P(S7,, < —x).

:1—|—O1<

THEOREM 4.4. Under the conditions of Theorem 4.3, the same result as (4.15) holds for
Uz,

It can be observed that the convergence rate and the converging range of = also outper-
form the results of Zhou et al. (2018) shown in Remark 4.1, and our condition on 7 is less
restrictive. We relegate the proof of Theorem 4.3 to Section A.13 and the proof of Theorem
4.4 in Section A.14 in the Supplementary Material.

4.2. Simultaneous confidence intervals. Cramér type moderate deviation results are use-
ful in providing theoretical guarantees for a wide spectrum of statistical applications, includ-
ing the multiple testing procedure and multiple confidence intervals for ultra-high dimen-
sional parameters. For an illustrative example, we will construct simultaneous confidence
intervals for the means under the following ultra-high mean model by using the studentized
winsorized mean estimator defined in (4.6). We consider

Zi:lj'—i_eiv i=1,--+,n,
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where {Z1,...,Z,} are i.i.d. observations, p = (ui1,-- , )7 € RP, and {ey,...,€;} are
i.i.d. errors. Denote 3 = Cov(€;) := (X;j)pxp. Assume there exist constants C1,Cy such
that maxlSjSPE\Zij\?’ < (i and minlgjgp 2”' > (Cs.

THEOREM 4.5. Assume the dimensionality p, the significance level o and the threshold-
ing parameter T satisfying log(p/a) = o(n'/3) and T > n'/3. Then for o € (0,1), and to
satisfying the equation

I R
T 711 2p),
we have
" f(Z t = lr¢ 2 a ]
wig ;u(zij)f—ﬁ{;f(zi-)} &(LjUj), 1<j<p

p

are the 1 —av— o(1) simultaneous confidence intervals for ('“J')j:r where f(-) is the function

defined in (4.2).

The proof of Theorem 4.5 will be provided in Section A.15 in the Suppplementary Mate-
rial.

5. Proofs. In this section, we present proofs of Theorem 2.1, Theorems 3.1-3.3 and
Theorems 4.1. Throughout the rest of this section, A and C' denote positive absolute constants
that may take different values at each appearance.

5.1. Proof of Theorem 2.1. We prove the theorem for the two scenarios 0 < x < 3 and
x > 3, respectively. First, we prove it for 0 < < 3. For this range, it is sufficient to prove a
Berry-Esseen bound as the following proposition will show. The proof of Proposition 5.1 is
postponed to Section A.1 the Supplementary Material.

PROPOSITION 5.1. For 0 < x < 3, there exists an absolute constant A > 0 such that
(5.1 IP(Sp >V, +¢) — [1 = ®(z+¢)]| < ALg .

Note that 1 — ®(3.6) <1 —®(z +¢) <1 for 0 <z <3 and |c| < x/5. Thus, it follows
from Proposition 5.1 that for 0 < z < 3,
(5.2) P(S,>aV,+c)=[1—-@(x+)](1+ 01 +x)Ls3,).
Moreover, it holds for 0 < x < 3 satisfying (2.6) that

(W3) "~ 1] < A2®Ls,, < ALs,,
which combining with (5.2) entails that
P(Sp,>aV,+c)=[1—P(z+ )|V, (1+O0(1+z)L3,).
Consequently, we have
P(S, > a2Vp +¢) = [1 — ®(x 4 )| TP B (1 + O(1 + x) L3 ),

where the quantity |O;| < A for some absolute constant. This completes the proof for 0 <
xr <3.
Next we deal with the case = > 3. By applying the elementary inequality

(5.3) 14+5/2—s2<(1+5)2<1+s/2,
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for s = V.2 — 1, we obtain
1 1
SV +1) = (Vi =1)? <V, < S (V1)

Therefore, plugging in the above upper and lower bounds yields

(5.4) P(Sp > aVp +¢) > P (225, — 2%V} > 2° + 2xc)
and
(5.5) P (S, > xV; +c¢)

<P (23:Sn - :Esz > 22 + 2xc — J:An)
+P (sn SaVy e V21 >z Y1V 6R§/2)) ,

where A,, = min{2z (V;? — 1) 2 ,x71(2V72R,)} and the notation a \V b means the maximum
of a and b. The upper bound holds because

P (Sn >aVn+c [Vi—1 <z '(1 V6R§/2))
<P (23;Sn — ;nsz > 2? + 2zc — 222 (Vn2 - 1)2, |Vn2 -1/ < 33_1(1 v 6R91c/2)>

<P (23:Sn — :E2Vn2 > 2% + 2xc — ajAn) .

The following Propositions 5.2-5.4 draw an outline of the proof for the case x > 3. Their
proofs are relegated to Sections A.2-A.4 in the Supplementary Material.

PROPOSITION 5.2. There exists an absolute constant A such that
(5.6) IP’(2gnSn—gnan2 > 2% + 23:6)
=[1—®(z+c)] VieP {1+ Os(1 + 2) L3},
for x > 3 satisfying (2.6) and (2.7) and |c| < x /5, where |O1| < A and |O2| < A.
PROPOSITION 5.3. There exist absolute constants A1 and As such that
5.7 P(2$Sn—$2Vn2 > 2 + 2zc — J:An)
<1 - B(a + ) WaeM F {1+ Ay(1 4 2) L},
for x > 3 satisfying (2.6) and (2.7), and |c| < x /5.
PROPOSITION 5.4. There exist absolute constants A1 and As such that
(5.8) ]P’(Snszn—i—c, V21 >x—1(1VGR}/2)>
< A1Ry[1 — ®(z + ¢)|Uhee e
for x > 3 satisfying (2.6) and (2.7), and |c| < x /5.
We obtain by substituting the results in Propositions 5.3-5.4 into (5.5) that
P (S, >zV, +¢)
<1 —®(x+)] UieMB{1 4 AR, + As(1 +x) L3}
<1 —®(x+ )| UieP{1 4 A(1 + ) L3}

which together with the result in Proposition 5.2 yields the desired result (2.5) for = > 3. The
proof is completed.
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5.2. Proof of Theorem 3.1. The main idea is to apply the big-block-small-block tech-
nique to construct a general self-normalized sum based on an independent sequence to
which our main result Theorem 2.1 can be applied. Denote B2 = Sy E{‘iz. We first ap-
ply Berry-Esseen bound for sum of one-dependent random variables to cope with the case
0 <z <O(y/logn). Note that

‘P(Sn > V)~ [1- @ =e )| ‘

i 2o,
= ‘P(Sn 2 eBy(1=ntP) %) — 1~ ¢<¢%m>”
b |B(S0 2 B0 0E) - [0 ()|

+ IP’(\V,? ~ B> n—1/3B§)
=F,+ Ey+ Es.

Recalling the definition of p,, in (3.1), we have Var(S,) = (1 + 2p,,) B2. By noticing the
assumptions

B¢ <ai, E&>a5, a=ajfay, —1/2<p<p,<1/2

and applying the Berry-Esseen bound for sums of one-dependent random variables (see
Shergin (1980)), we obtain

o3 . 2(1 — n-1/3)1/2
EléA(\% +‘<I>(\/T72pn>—q>( (1\/T2pn) )‘

< A(p)a®(n™V2 + 220713 < A(p)a® (1 + x)2n Y3,

where A(p) is a positive constant depending on p and may take different values at each
appearance. In the same manner, this above bound applies to F5 as well. As for Ej3, it follows
by Chebyshev’s inequality that

Es < (n'3B;2)?E[(V? — B?)?] < Aa*n~ /3.

Therefore,
5.9 P(S, > 2V, —[1—c1> 41 4 2)2n V8,
59 [Pz av) )] | < P
Moreover, observe that 1 — ®( \/m) \/_) for 0 < < 2v/3 and
2

\/1—1—2/)” 2(1+42p)
for > 2v/3. As a consequence, there exists a constant ¢, depending on p such that (3.2)
holds for 0 <z < ¢,/logn.

Next we turn to the proof for x > c,+/log n. Let the length of big blocks be I = [n®], and
each small block contains only one random variable. Denote & = [n/(l + 1)]. Without loss of
generality, let us assume n /(I + 1) to be an integer, then the sequence of {¢; }1<i<, can be
divided into k big blocks and k small blocks. Observe that if n/(l 4 1) is not an integer, the
sequence of {&; }1<;<, will be divided into k + 1 big blocks and k& small blocks, in which the
first k& big blocks are of size [ and the last one is of size n — (I + 1)[n/(I + 1)]. Although the
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size of the last big block might be different, our analysis also applies under this scenario. For
1 <5 <k, the j-th big block and the corresponding block sums are given by

Hy={i: G-I+ +1<i<jl+1) -1} and X; =) &, VP =) &,

i€H; icH,
Moreover, we denote
k k
(5.11) Sm=Y_X;, VA=>Y? Bl =EV3,
=1 i=1
k k
(5.12) Snpa = ij(lﬂ)a Viy = Zf?(url)’ By =EV3
Jj=1 J=1

Observe that { X }1<j<k and {£;41) }1<j<k both consists of independent random vari-
ables. As Sy, is the sum of /s in big blocks and it is the main part of > ; &, while Sy2
corresponds to the small blocks. The big-block-small block technique splits the sum Y ", &;
into two parts S,1 and S92, each of which is a sum of independent random variables. Let
T = Bpo/x and we do truncations fl =& 1(]&| < 1) only for the &;’s in small blocks, that is,

=j(l+1)for1 <j<k,so

(5.13) P (Sn > an) < P(Sn > ZEVn) + P(Sn > 2V, 121&2(1@ |£j(l+1)| > 7’),
(5.14) P(Sn > aVa) 2 P(Sy > 2Vy) — P(Sn > aVn, max [€11)| > 7),
<<

where S, = Sp1 + Sna, V2= V2 + V4 with Spp =35 §pny and VE =38 é;.(m).
For a positive number d; > 0, we have the upper bound

(5.15) P(S, > V) <P(Sp1 > 2V — din” 22B,,)
+ P(Sng > dln_%:an)
and the lower bound
(5.16) P(Sy, > 2Vy) > P(Sp1 > Vi1 + dln—%xB )
—P(Sp1 > 2V, VA < B2 /4)
—P(Sp2 < —din " 2aB, +x(Vy, — Vi), Vi3 > B2/4).
We can obtain the following bounds for the terms involved in (5.15) and (5.16). The proofs

of Propositions 5.5 and 5.6 are given in Sections A.5 and A.6 in the Supplementary Material.

PROPOSITION 5.5.  There exists an absolute positive constant dy and a constant A(p,dy)
depending on p and dqy such that, for d; = /{pa2 with some sufficiently large constant k ,

G171 P(Sm =2V + din/%B,)
T atz*  a%’2?  aPw
B [1 b, —|—2_pn)] (1 +Ol(n1 atant n;>)
uniformly for x € (2,doa™" min{n®/*,n(1=*/4Y) where |O1| < A(p,dy). A similar result
holds for P(Sp1 > 2V — din=?zB, ). Moreover,
B2

(5.18) ]P’(Snl > Vi, V2 < T)
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Azt
< e |
— nl—a

- () exp { Aa' +Aa3%},

uniformly for x € (2, doa_ln%(l_a)).

PROPOSITION 5.6. Fordy = /ipa2 with k, > 10, we have

(5.19) IP’(S'ng > dln_o‘/szn) < exp{—ﬂ;pxz/ﬁ},
(5.20) P(Spa < —din="?x B, + x(Vi, — Vi), V4 > B2/4)

< exp{—r,z%/14}.

Note that for z > c,+/log n and sufficiently large x,

exp{—k,2?/6}

(5.21) — < exp{—k,r%/12} < n~4,
=2 (7)
By choosing oo = 1/2 and combining (5.17)-(5.21), we obtain
. . T atr?
.22) P(Snzath) = [1- () | (14 0(i))

uniformly for a € (c,\/Togn,doa™'n'/®).
In addition, we can bound the error terms in (5.13) and (5.14) as follows. The proof of
Proposition 5.7 is shown in Section A.7 in the Supplementary Material.

PROPOSITION 5.7.  Under the conditions in Theorem 3.1, we have for x € (c,+/logn, doa_lnl/g)
that

P(Sn > 1V, gjagxk €ian)| > T)

(5.23) 4 4
a*(1+x) x
< A(mdo)w 1- q’(\/ﬁ)]
and
IP’<Sn 2 ZVn, max, 5| > T)
(5.24)

< A(p,do)w [1 B Q(ﬁﬂ

Consequently, substituting (5.22)—(5.24) into (5.13) and (5.14) yields the desired result
(3.2). This completes the proof of Theorem 3.1.

5.3. Proof of Theorem 3.2. The proof for Theorem 3.2 again builds on the big-block-
small-block technique, and also exploits a lemma in Shao and Yu (1996) to replace the
weakly dependent big blocks and small blocks by independent random variables, respec-
tively. We begin the proof by introducing three essential lemmas from the literature. Lemma
5.1 (Theorem 4.1 of Shao and Yu (1996)) and Lemma 5.2 (Theorem 10.1.b of Lin and Bai
(2010)) concern the bound of moments under weak dependence while Lemma 5.3 (Lemma
2.1 of Berbee (1987)) shows that a -mixing sequence of random variables can be replaced
by an independent sequence of random variables in a domain whose measure is at least

1370, B9,
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LEMMA 5.1. (Theorem 4.1 in Shao and Yu (1996).) Let {X;,i > 1} be a sequence of
zero-mean random variables with E|X;|" < u" for r > 2 and p > 0. Assume that mixing
condition (3.6) holds, then

i=k+m ,

EH z:; x|

forany 2 <r' <r,m>1and k >0, where C is a constant that depends on r’,r, a1, a2 and
T.

} <Cm" P

LEMMA 5.2. (Theorem 10.1.b of Lin and Bai (2010).) Assume {X,};>1 is a sequence
of random variables and (n) is the [3-mixing coeffient defined in (3.5). Denote by alf and
0, the o-fields generated by {X;}1<i<k and {X;}i>pyn, respectively. For X € Ly(at)
andY € Lq(0}5,,) withp,q,r > 1 and % + % + % =1, we have

(5.25) [EXY — EXEY| < 88(n)"/"||X ||Vl -
For two random variables (or vectors) X and Y, define

ﬁ(X, Y) = %Sgp ((P)@y — IP)X X Py)(A) — (P)Qy — IP)X X Py)(Ac)>.

LEMMA 5.3. (Lemma 2.1 of Berbee (1987).) Let {;,1 <i< n} be a sequence of ran-
dom variables on the same probability space and define 3 = B(&;, (€ix1,...,&n)). Then

the probability space can be extended with random variables §; distributed as &; such that
{&i}1<i<n are independent and

(5.26) IP(& £ &, for some1 <i< n) <pW 4 ... 4 g,

Recall the definition of block sums {Y}}i<;j<j in (3.7). We set the size of big blocks
as my = [n®'] for some 0 < a; < 1 — « and the size of small blocks as 1. Denote k1 =
k/(my + 1), where k = [n/!]. For simplicity of presentation, we assume k/(m; + 1) to be
an integer, as explained in the proof of Theorem 3.1. The u-th big block is given by

Iu:{j:(m1+1)(u—1)+1§j§(m1+1)u—1}, for1 <u< ki.

Define

k k
Sk=2 Y VE=) Y7 &=) Y. m=3 Y}
j=1 j=1

jel, Je€l,

kl kl kl kl
Ska=D & VA=) mn St2=) Yum+n: Vie=D Yim 1)
u=1 u=1 u=1

u=1
k k1 ky
By=) EY?, Bi,=) > EY?, Bl,=» EYj, .
j=1 u=1j€el, u=1

By Lemma 5.2, it is easy to see that under the mixing condition (3.6),

B2 k1 ES;,
27 no_q =1 —o 2
(5.27) B +O( p ) +0(n™™), B%,l

3 =14+0(n "% +0(Mn ).
n,l
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Let Y] =Y,1(|Y;| <b), where b = By, 2/(1 + x). Parallel to one-dependent case, we sepa-
rate the big blocks and small blocks right after truncating the terms inside the small blocks.
Denote

k1

51]%2 = Z Yu(ml—i-l)a gk - Sk,l + Skg
u=1

iy
o9 9 212 1
and Vidy =) Vi Vi=Vii+ Vi

u=1
It is straightforward that
(5.28) ]P’(Sk > ka) < ]P’(Sk > ka) + ]P’(Sk >V, 121%)21 ‘Yu(m1+1)’ > b),
(5.29) P(S) > 2Vi) > P(S), > 2V;) — P(Sk > 2V, max ¥y n )| > b).

Further, for the main term P(Sk > ka), we choose € = d; n—01/2 log n with a positive num-
ber d; > 0 and obtain

(5.30) ]P’(S'k > ka) < ]P’(Sk,l > kaJ — ExBn) + ]P’(S'kg > axBn),
(5.31) P(Sk > aVi) 2 P(Sk1 2 aVi +=aBy)

—]P’(Sk | > aViy, VP < B2>

. zV2
—P( Sy — —2 < —exB,, Vi > Ip2).
Vie + Vi ’ 4
The estimate for dominated terms P(Sy 1 > 2Vj 1 — exBy,) and P(Sy 1 > a2V, 1 +exB,,) is
presented in the following lemma and the proof will be shown in Section A.8.

PROPOSITION 5.8. Assume ¢ = din®/2logn for a positive number di > 0 and oy <
aTt. Under the conditions of Theorem 3.2, there exist a positive constant cy depending on
dy, 1/ p2, a1, a9, and T such that

(5.32) (S > 2Vi % cxBy)/[1 — ()]
B (1+az)! 1+ (1+z)? (1+x) logn
=1+ O<n1—a—a1 + nl—a—a1)/2 + no nai/2

uniformly for © € (0, comin{n(1=0=)/4 nat/2 pa/2 (logn)=1/2pe/4}),

For small-block-related error terms, S}, » and Vk 5 can be replaced with the sum of inde-
pendent random variables by Lemma 5.3. In addition, following a similar proof to Proposition
5.6, we obtain that under £ = dyn~*/2logn for d; being some positive number depending
on yu1 /2, there exist positive numbers C and Cy depending on a1, ag, i1, f12, o and 7 such
that

(5.33) P(Sk2>coB,)

<exp{-Ci(1+ :E)2d1 logn} 4+ Cyexp{—aan®" /2},
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N zV72 1
(5.34) P(Sm k2 B, VA > —Bg)
%+ Vit o4
<P(S 7Via B
= ( B2 e S T ")

<exp{-Ci(1+ :E)2d1 logn} 4+ Cy exp{—aan®" /2},

where the error term C exp{—a2n®” /2} is obtained by applying Lemma 5.3 to replace Sy, 2
and V,f2 with sum of independent random variables and the fact that (see Berbee (1987))

(5.35) B({Xi}ieq A Xi}ieqr) < B{Xi}ick, {Xi}iznar) < B(n),

forany sets 7' C {i <k}, J" C {i>n+k}.
Regarding big-block-related error terms, by using Chebyshev’s inequality and Taylor ex-
pansion, we control the error term in the same manner as the proof of (A.40). We can obtain,

(5.36) ]P’(SM > aViy, V2, < %BZ)
4
<A (10 [e(1+ 0" +n))))

uniformly for € (3, comin{n=*=1)/% na7/21) ‘When 0 < z < 3, it follows from Lem-
mas 5.1 and 5.3 and Chebyshev inequality that under condition (3.6),

1 1
]P)(Sk’l 2 xv’“’l’v’g,l S 13721) < ]P)(Vk2,1 < ZBT%)
By - 33/4}
ok moa
2 Zu:l Eﬁﬁ
<an®e ™™ +exp{—An' "% uy [}

< alnal e 02n + eXp{ _

Ay(1 4 2)*
S camar [1— ()]
Substituting (5.39), (5.33), (5.34), and (5.36) into (5.30) and (5.31) yields
(5.37) P(Sk > 2Vi)/[1 — ()]
B (1+x)4 1+ (1+2)> (1+x)%logn
=1+0 (nl—a—al nl—a—a1)/2 no + nai/2

uniformly for = € (0, co min{n(1=@=)/4 pnat/2 pa/2 (logn)=1/2pe/4}),

To avoid redundance, we omit the analysis of the truncation errors in (5.28) and (5.29) as
their proofs share the same fashion with (A.59) and (A.60). Consequently, (5.37) also holds
for P(Sy > zV},). Finally, we need to balance the error terms by choosing «; and seeking the
best convergence rate or largest range for convergence. As a result, we choose ai; = (1 —«) /2
when (1—«)/2 < ar, and choose a; = a7 when (1 —«)/2 > a7, and then the desired result
follows. This completes the proof for Theorem 3.2.

5.4. Proof of Theorem 3.3. The main idea is to use one-dependent random variables to
approximate {Y}}1<;<x and then apply Theorem 3.1. Recall that m = [n®] and k = [n/m].
Let

Y; =E(Yjle;,mj —2m +1 <1 <mj)
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and
-
- Y
(Ch v

T, =
As {&¢}1eg are ii.d. random variables, {Y;};>1 are one-dependent. Note that by conditional
Jensen’s inequality, for 2 < r <4,

b2

T

Eg:mj—2m+1§€§i)

T

= E{‘E [Xi -Gy, (tg;;;j—megmj—2m+17 e ,52')

|

)

< EHXZ — Gy (9&j_2m75mj—2m+17 cee 752')

< [Ar(i —myj + 2m)] T,

which together with the assumption (3.16) and the fact that m(j — 1) +1 < i <myj fori € H;
yields

(5.38) ||Yj—§~/j||rgZHXZ-—E<XZ-55:Z'—2m—I—1§€§Z’)
icH, "
< maje =",

The above bound shows that {Y}}i<;<) can be well approximated by the one-dependent
sequence {ffj}lg j<k- We can derive Theorem 3.3 by aggregating the following two proposi-
tions. The proofs of Propositions 5.9 and 5.10 will be provided in Sections A.9 and A.10 in
the Supplementary Material, respectively.

PROPOSITION 5.9. Under conditions of Theorem 3.3, we have there exists a positive
constant dy depending on T,a, w1, a1 and as such that

1+ 22 1+:132))

(5.39) P(Ty > x) =[1— ®(x)] (1 + O<n(1—a)/4 na

Uniformly for x € (0, dy min{n(1=®)/8 na/21),

PROPOSITION 5.10. Under conditions of Theorem 3.3, we have for x > 0,
(5.40) P(Ty > z) <P(Ty > 2 — Cyn~") + Cye @™ 4700 ™))

(541) and P(Ty >z) >P(T}, > o+ Cin~ ') — Cy(e™™"" 7 00),

Applying Proposition 5.9 to P(T}, > = + O(n~")) yields
]P’(Tk >z O(n—l))

= [tz ron )] (1+ 0t + )

=[1—&(z)] <1+O<n1(:5;j4 + 1+$2)>

uniformly for z € (0, dg min{n(!=®)/8 n®/2}). Note that the error term ¢=%""" 4 ¢~ ")
decays at an exponential rate, which is always faster than the polynomial rate. By substituting

the above result into (5.40) and (5.41) leads to the desired result (3.21). The proof of Theorem
3.3 is completed.

na
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Supplementary Material to “Asymptotic Distributions of High-Dimensional
Distance Correlation Inference"

Lan Gao, Qi-Man Shao and Jiasheng Shi

This Supplementary Material contains all technical details of proofs. Section A provides
the proofs of all the propositions, Theorems 4.1, 4.3 and 4.5, and Corollary 2.1. Section B
presents the proofs of lemmas.

APPENDIX A: PROOF OF PROPOSITIONS

A.1. Proof of Proposition 5.1. The proof borrows some techniques from Wang (2011).
The main idea is to first truncate the random variables, and then to apply Berry-Esseen bound
for U-statistics and Berry-Esseen bound for sum of independent random variables for the
upper bound and the lower bound, respectively. Define

Xi=X1(](1+2) X < 1), n_ZXZ,

Vi =Yi1(|(1 +2)Y;| < 1), ZW

It is easy to see
(A.1) IP(Sy > 2V, +c) —[1— ®(z + )|
< |P(Sp > aVn +¢) = [1— @z + )|
+Y P(1+2)X|>1)+ > P((1+2)Y;|>1)
i=1 i=1
< |P(S, > 2V, +¢) = [1 = @(z +0)]| + (1 +2)3Ls .
Let B2 S 1EY2 and K; = Y2 EY2 then it follows from the basic inequality (5.3) that

(A.2) P(S, > 2V, +¢) > P <2$Sn — 22>+ 23:0) ,
and
(A.3) P(S,, > 2V, + ¢)

~ T ~ A T N Ao\ 2 ~
gIP(Sn—E<Vn2—B,%>+B (V,f—B,%) >3:Bn—|—c>

n n
x .
ZP<Z(UZ- ~EU;) + EZKZ-KJ» zan,H—c—ZEUZ-),
=1 n o j£j i=1
where U; = X; — -2 5 Ki+ 3 2 K?2. Observe that > 1 | (U; — EU;) + B =D iz KiKjis a

U-statistic. We w111 apply the Berry Esseen bound for U-statistics estabhshed by Alberink
(2000). Obviously, |B2 — 1| < (1 4+ z) L3, < ¢; by (2.6), hence 3/4 < B2 < 5/4 for ¢; <
1/2. We obtain that for 0 < x < 3,

(1+m) ZE\X 1+

ZEY4 < ALz,

nzl
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‘ ZVar(Ui) - 1‘ < AL3,,
i=1

~ x X
§‘ 1:E|UZ-|3 < §' 1:A<IE|XZ-|3 + B%IE|KZ-|3 + B?LIE|KZ-|6) < ALsp,
1= 1=

2
x x
and ZVar(ﬁKin) =) —EK/EK; < AL,
i#j n i#j n
It follows from the Berry-Esseen bound for U-statistics (see Theorem 1 in Alberink
(2000)) that

‘P(i(m —EU;) + %ZK,-KJ- > B, +c— zn:EU,) —1-®(z+c)]

i=1 noi#j =1

< ALs, + ‘[1 —®(zB, +c— zn:EUi)] -1- @(erC)](

i=1

<ALs, + A((Bn -1)+ ‘ zn:EUi ) < AL3zp,
i=1

which together with (A.3) yields the upper bound
(A.4) P(S, > zV, +¢) — [1 —®(z +¢)] < ALz,

Regarding the lower bound, denote W; = 22 X; — x2Y;?. It is easy to find that for 0 < z < 3,

‘ ZEWZ + xz‘ < AzL3,, ‘ ZVar(Wi) —42?| < Aa:2L3,n,
i=1 i=1

n
and Y E|W;* < A2®Lg,.
i=1
Consequently, the Berry-Esseen bound for sums of independent random variables implies
(A.5) |P(22S,, — 22V;2 > 2% + 22¢) — [1 — ®(z + ¢)]|
<[r( iy (Wi — EW)
(325 Var(W7))1/2

—[1+®(x+c—AL3,)]

>x+c—AL37n)

+|®(x+c—AL3,) — P(xz+ ¢

AY B
(X V(W)
which together with (A.2) yields
(A.6) P(Sp > aVy +¢) = [1 —®(z +¢)] > —ALz .
Combining (A.1), (A.4) with (A.6), we obtain that for 0 < z < 3,
‘P(Sn >V, +e)—[1—®(x+ C)H < AL3,,.

+ AL3,TL < AL3,TL7

This completes the proof.
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A.2. Proof of Propositions 5.2. Before starting to prove Proposition 5.2, we first collect
some notations related to the conjugated method, which is the main tool to prove Propositions
52-53.For1<i<n,let W; =2z X; — 3:2YZ-2 and (&;,7;) be independent random vectors
with distribution

E{M1(X; <, Y <y)}

(A7) Vi (.Z', y) = Ec\W: )
Denote ﬁé =2x&; — 3:277?. It holds that
o EW, AW,
EW: =
EeMWi
—  EW2eW: —
Var W; = W — (EW;)?,
__ E|W: 3 AW,
E|W; |3 = L.
Ee Wi

We establish the expansion of the above moments in the Lemma below. The proof of Lemma
A.1 will be given in Section B.1.

LEMMA A.l. Let W, =2zX,; — szf. For % <AL % and x > 0 satisfying (2.7), there
exists an absolute constant A such that

(A8) EeM' =1+ 2)\%22EX? — \2’EY? + §A3x3EXf’ —2\2PEX; Y2 4+ O1 R,
4
= exp {2A2x2EX3 — \’EY? + §A3x3EX§ —NPEX YA + Ong} :

(A.9) EW;eM' = 4X2?EX? — 2?EY? 4 40223E X7 — AN®EX; Y2 4 OsR,. 4,
(A.10) EW2eMW: = 40°EX? 4 8A2 EX} — 42°EX; Y2 4+ O4 R, 4,

(A.11) E[W;[*e*Ws = O052% (E|X;|* + E|Yi[*) + Og Ry,
where |O;| < Afori=1,...,6.

The next lemma is Lemma 2.1 in Wang (2011) with some modifications.

LEMMA A.2. We have for x satisfying (2.7) that

(1+2) (EXY)* < 2005,
(1+2)°EXZE|X;]? < 26,4,
(1+2)(E|X[*) < da s,
and similar results hold for Y;. In addition, if x also satisfies (2.6), then

(1+2)'L3,, <26,.

By Lemmas A.1 and A.2, it is readily seen that under (2.7),

EW; = 22 (AAEX? — EY?) + 2% (4ANEX} — 4ANEX,Y?) + O1 Ry,
Var W; = 40?EX? 4 2° (SAEX} — 4EX;Y?) + O2R,;,
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and

E[Wi|* = 052 (E1X,* + E[Vil*) + OsRas

Put m, = 1 EW;, 02 = 3" VarW;, v, = 3.7 E|W;|*. Consequently, we obtain

(A.12) mp = A\ —1) 2% + 2° (4)\2 D EX] — 4 ZEXJﬁ) +O1R,,
=1 =1
(A.13) o =42+ 4° (8AZEX§ —4ZEXZ-YZ-2> + OqR,,
i=1 =1
and
(A.14) vy, = O32° L3, + O4R,.

Define m (A\) = 31, log Ee*Ws, therefore, m,, = m’()\) and o2 = m”()). Before proving
Proposition 5.2, let us present the following lemma that will be applied in the proof.

LEMMA A3. For x satisfying (2.6) and (2.7), if |6 (z) | < 3% and |0y () | < $2?, then
the equation
m' (\) =2*+6(z),

has a unique solution \s. In addition, \s satisfies % <A < % and

1 4(x) 2 - 3 - 2 -2
(A.15) A5 — <§ + E) +x <>\5;EXZ- - AgZ;EXZ-YZ- < Az 2R,
and
(A.16) As — sy — %ﬂ%@) < A{z 2R, +|6(x) — do(2)| 2~ Ly n}

Moreover, we have

4 n n
(A17)  m(\s) = (2X] — Ag) 2° + 2° <§A§ > EX] — 23 ZEXJ}) + O1 Ry,
i=1 =1
and

(A.18) [m (As) —m(Xs,)| < A(Ry + 16 (z) — do (2)])-

The proof of Lemma A.3 will be shown in Section B.2. Now we are ready to prove Propo-
sition 5.2. The main idea is to use the conjugate method (see (4.9) in Petrov (1965)). Assume

A1 is the solution to m/(A) = z% + 2zc. Write S,, = S W, Uy, = <S~n — mn) Jon. Itis
well-known that by the conjugate method
P (225, — 2*V,? > 2* + 2xc) :exp{m()\l)}Ee_Alézll(rS'; > 22 + 2x¢)
—exp{m(\1) — \ymy, }Ee U 1(U,, > 0).
Let Z be a standard normal random variable. Define

I =sup |[P(U, <xz)—P(Z <z)|,
z€R

Iy =Fe M9Z1(Z > 0).
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Integration by parts gives
|[Ee~ 17U 1(U, > 0) — e~ M7 #1(Z > 0)| < 21.
As aresult,
(A.19) !IP’ (2a:Sn —2?V2 > 2% + 23:6) —exp{m(\1) — Almn}lg‘
<2exp{m(A1) — AMimn .

Applying the Berry-Esseen theorem to I; and by the fact of (A.13) and (A.14), it is easy to
find that for = > 3 satisfying (2.6),

(A.20) I < A% < A(Lsp+773Ry).

n

Regarding I, we have

I— eMon/2 oo g L 1= ®(on)
V21 i, Ver  p(Aion)
where ¢(x) is the standard normal density function. Let ¢)(z) = %;()m). For x > 3,
(A21) e 2<y(x) <z and |¢(z)| = |xy(z) 1| <272
By (A.13) and the fact that 1/4 < A\; < 3/4,
Ao — 2\ 2| = Aoy, — 427 <A(2’Ls, +2'Ry),

on+ 22

therefore, under (2.6) for small constant c;, there exists some 6* between 2\;z and \jo,,
such that

(A22) I— J%{w (202) + ' (07) (Mo — 2292)}
_ \/%71” (2\a) {1+ O1(eLsn + 2 2Ry))

=M 1 - @ (2\2)] {1+ O1(2L3, + 2 2Ry) }
Since 1/4 < \; < 3/4, we have for x > 3
M1 — @ (20\2)] > Az,
which yields
I < AP [1 — @ (202)] (zLspn + 2 2R,).
Consequently, by (A.19)—(A.22) and m,, = m/(\;) = 22 + 2xc, we arrive at
(A.23) P(2zS, — 2°V,2 > 2? + 2xc)
=exp {m(\1) + (202 — \)2? — 2\zc}
x [1—®2M\a)] {1+ O12Ls, + Ox ?R, }

=exp {m(\1) + %(aj +¢)? = Ai(z® + 22¢) }

X [1—®(z+c)] eOlRm{l + Oy L3y},
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and the last equality holds because
I\ — | < AxLs, + Asr 2R,

By applying (A.15) and (A.17) in Lemma A.3, where v = (1 + ¢/x)/2. Noticing that
a*L3,, <26, <2R, by Lemma A.2, we obtain for  satisfying (2.6) and (2.7) that

1
(201 — A1)2® + 5(1‘ +¢)2 = A (2? + 22¢) =222 (A — 7)2 < O1R,.
Thus (A.17) implies

(A.24) m(A) + %(aj +¢)2 = A\ (2? + 2z¢)

4 n n
- 573;,;3 > EX} - 29727 Y EX;Y? + O1R,.
i=1 i=1
Finally, we arrive at the desired result (5.6) by substituting (A.24) into (A.23). The proof is
completed.

A.3. Proof of Proposition 5.3. The proof again relies on the conjugate method and a
randomized concentration inequality for independent random variables. Recalling the def-

initions of Ay, 3; and U, at the very beginning of Section A.2, we have by the conjugate
method

(A.25) P (225, — 2?V;? > 2% + 2zc — zA,)

= exp{m(/\l)}Ee_)“é:‘ 1(S, > 22 + 2zc — zAA,,)

= exp{m(A\1) — Aymy }Ee MU 1 (U, > —xUA")
=P+ P,
where
P =exp{m(\1) — \ymy }Ee MU 1(U, > 0),
Py, =exp{m(\;) — Almn}Ee_AIU"U"l(—xa—An <U,<0),

and A, = min{2z(3X" 72 — 1)2,271(2 V 72R,)}. We already established in (A.23) that
(A.26) Py =exp{m(\) + (2)\% - )\1) 2 — 2\ zc}
x [1—®2M2)](1 + O12L3, + Oz 2R,).
As for Py, because 2/, < 2 + 72R,,,
zA,

n

(A27) Py < 7R explm (Ay) — Almn}]P’( I8 oy, < 0).

As U, is a normalized sum of independent random variables, we apply the randomized con-
centration inequality by Shao and Zhou (2016) (Theorem 4.1 therein) to estimate the con-
centration probability involved in P». As A, < 2z(V,;2 — 1), it is sufficient to bound the

concentration probability as if A, = 2z(V;2 —1)? and A,, = 2z(3", 7> — 1)2. Denote
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Z; = YZ-2 - IEYZ-2 and define Agf) as Agf) = 23:(2#2- Zj)2. ﬁ%) is defined in the same man-
()

ner as A’ but with {Y; }1<;<,, replaced by {n; }1<i<,. We obtain

(a28)  P(-""t<u, <o)<17—+ E\AH ZEWV{A — AWy,

On
Furthermore, it follows from the distribution of (&;,7;) defined in (A.7) that

(A.29) E|A,| = exp{-m(A)}E {|A, et = W}

<2z exp{—m(A\)}E { (Vn2 _ 1)2 M iy Wz} 7
and
(A.30) E[Wi{A, — AP}
= exp{—m(\)}E{ [Wi{A, - M:"}!& Ziawi

(s

J#i
P22y Zy|eM Ea W

J#i

< 2z exp{— (Al)}E{

— 2z exp{—m(\) JE{ |W;

The lemma below presents the bounds of (A.29) and (A.30) and the proof will be presented
in Section B.3.

LEMMA A4. For x satisfying (2.6) and (2.7) and 1/4 < \y < 3/4, there exists an abso-
lute constant A such that for x > 3,

(A31) E{(Vn2 —1)? M T } < Ay exp{m(\) Yo 2Ryedefe,

a32) S E{|Wi|
=1

In general, assume 0 < r < rg < 1 for a constant ry. For a number w > 1, there exist con-
stants Ay and Ay depending on ro and w such that

(A.33) E{ (V2 - 1)262?:1(27’96X7;—wrx2y12)}

P27y Zj‘eh T WZ} < Apexp{m(\;)}a 2R e e
J#i

AlR

exp{(2r —wr)a? —2wr2x32EX v24d o 333ZIEX3—|—A2R }
=1 i=1

Consequently, by assembling (A.27)—(A.32) and (A.12)—(A.14), it holds that
(A.34) Py < Aexp{AR,}exp{m(\1) — \imp}(L3n + 7 IR,).

Moreover, by observing that m,, = m/(\) = 22 4+ 2zc and 1 — ®(2\ z) > Cz~le=2X*" for
x>2and 1/4 < A\; < 3/4, we obtain

(A.35) Py < Aexp{AR, }yexp{m(\1) + (2A} — \;)x? — 2\ zc}
X [1 — (13(2)\195)] {A4$L37n + A5Rx},
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which combined with (A.26) yields
P(2xS,, — 2*V2 > 2% + 22zc — xA,)
<exp{m(A\1) + (2\2 — \)z? — 2\ xc} [1 — (20 x)] e (1 + AL )

=exp {m(\) + %(ac +¢)% = A (2% + 2z0) }

X [1—®(x+ c)] edef (1 4+ Ay Ly ),
where the last equality is derived by a similar procedure to (A.23). Finally, we arrive at the

desired result (5.7) by using (A.24). The proof is completed.

A.4. Proof of Proposition 5.4. We use the truncation technique to estimate the error
term. Let B = 2500 V 200cq. Here the constants 2500 and 200 are set large enough for sim-
plicity of proof, because we are not pursuing the best possible constants. The integrating
region can be partitioned into three parts as follows,

3
(A.36) P(Sn >aV,+e[VE-1>a" 1V 61%;/2)) <SP (S0 V) ),

i=1
where {Q;,i=1,2,3} are given by
Q1 ={(w,v) €(R,R"): u>azyv+c, 1+27 11V 6RY?) <v< B},
Q={(u,v) €(R,R"): u>azyv+c, v<1 —:E_l(l\/GRi/z)},
Q3 ={(u,v) €(R,R"): u>a\v+c, v>B}.
For the first part, we choose
=z +c, tlzgx(:n—l—c).

By Chebyshev’s inequality we obtain

(A.37) P((Sn, V) € )
2 : 2 2 5 S,—t1V?
<z exp{ - (u’:)r)léﬂl(rlu - tlv)}E { (Vi—-1)"e } .
Obviously,
(A.38) (u,il)légl(rlu —tv)

e <C+ ey1427101v 6R§/2)) —t1(1+27 (1 V6RY?)).

It follows from applying (A.33) in Lemma A.4 with » = r; /(2x) and t = t; /2% (It is easy to
verify the conditions for (A.33) are satisfied when |c| < z/5) that

(A.39) 1[43{(%2 _ 1)2 ensn—tlvg}

<Afe {T—%—t —|—ﬁ2n:EX3—rt Zn:E[X-Y2]+A R }
=72 p2 1 62-—1 i 111'_1 il 20 (-
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By plugging (A.38), (A.39) and the value of r1, t; into (A.37), we arrive at
(A.40) P((Sn, Vi) € )

(z +c)?
2

* 2 2.3 - 2
§A1RI\IImexp{ - +:7 ;E[XZYZ-]

-1

— 227(1V 6RY/?) [(\/1 +al(1VeRY?) +1) 7" - g] - Asz},

where v = (z + ¢)/(2z). For 2 > 3 satisfying (2.6) with a small constant ¢; < 1, it holds
1/2

that z71(1V 6R,’") <1/3. Note also that 23|E[X;Y?]| < 223 L3 ,, < xRy by Lemma A.2.
Hence

P((Sn, V7)) € Q1)
< A3zRy W [1— ®(z +c)] exp {0.472331%916/2 — 22v(1V 6RY?)-0.06 + Ang}.

Furthermore, observe that 1V GRi/ 2 >1/2+ 3Ri/ % and 2 /5 <~ < 3/5, therefore

(A.41) P((Sn, Vi7) € )
< A3zR, U5 [1 — ®(x + )] exp{—0.024z — 0.048zRY/* + A, R, }
< AR VL[ — ®(x + )] et

As for the second error term, by choosing 7o = x + ¢ and t3 = 2x(z + ¢), we have under
(2.6) that

(A.42) inf  (rou — tov) =19 (C_|_ 3:\/1 —z1(1v Rglg/2)> 4y (1 _ 3:_1(1 Y Rglc/2)>-

(u,v)EQ2

In the same manner as the proof above, combining (A.37), (A.41) and (A.42) with r1,t;
replaced by ro, 9, we obtain

(A.43) P ((Sn,V,}) € Q)
<AjzR;[1 — ®(x+0)] ¥,
X exp { _Z vV 3zRY? — 6’72:E3 E:IEXZ-Y-2 + Ang}
2 xr — (2
< A1R,[1 — ®(x + ¢)|Wf et

Next we deal with P ((S,, V;?) € Q3). Recall the notations

1=

n
YV, =Y1((1+2)Y|<1), V2=> V2
We also denote
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Y, =Y1(|(1+2)Y;| > 1), ZW

It is evident that
P (S5, V;?) € Q23)

— 9@V,
gp(swﬂ,vnm/ﬁ)+P<sn>u,vn>\/ﬁ>

10 10
<K;+ Ky + K3,
where
. VB ¢ ., B
K =P x4 — 2> —
(Sn> 10 x+10, Vo> 5 |
. VB ¢ ., B
Ky =P x4 — s —
2 (Sn> 10x+10, Vn>2 ,
- V;
K;=P(S,> 9(@Va+c Vo>VB).
10
By Chebyshev’s inequality and recalling that B = max{2500,200c } we have
Let Z; = Y2 — EY}, then it holds that
2. 2 2 ’ISn
(A.45) E [(Vn - 1) eT}

n n 2 )
<Z Zz - Z EY?) emin
i=1 1=1

i n 2 . [ n 2 R
<2E (ZZ) 7| +2E (ZEYf) e
i=1 =1

n 2 N n 2 R
<2E (Z ZZ> e | +2E |24 (Z Eaz?’l/i?’) e "
i=1 =1

§22EZ e HEe z —|-2:L'_4R2HE€ 2V
i=1 Ee =2

EZ-eITXi EZje o5,
+ay e T[Ee=.
i Ee 2 Ee s j=1

Furthermore, by Taylor expansion and the same argument used in Lemma A.1, we can obtain

(A.46) Eez2 = exp { 3 2EX2 :EsEX;O’ + Olézv,i}a

48
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(A47) EZie = =0 (x (BE|X* + E[YiP)) + O (7%6,),
(A.48) EZfemTXj =0 (a:_4(5x7,-) , and EYZ-%% =0 (33_2(5507,-) .
By plugging (A.46)—(A.48) into (A.45), and the fact that 2* L3 ,, < 46,., it is readily seen that
N 2 .3, AR 1
2 x 3 3
(A.49) E[(Vn —1) e } <= eXp{gzn +— ZEX + AR, }

Substituting (A.49) into (A.44) yields for |c| < z/5,

11 5 =zc 1 3n 3
Rt B EX; AR}
8:13 20—1—483:; i T AL

(@+c)? 1, }

(A.50) K, < Ciz 2Ry exp { _

——z°+ AR,

< Cyz %R, exp {— 5 1

1
<C3[1—=®(x +c)] Ryexp {—§x2 + Ale}

< CyR,[1— ®(x + ¢)| Uhetr B
and the last inequality holds because z satisfies (2.6) and
n n
2% Y "EX}|<a®Ls,, and |2°) EX;Y?| <2PLyy.

i=1 i=1
Similarly, exploiting the upper bounds (A.46) and (A.48), we have

2 3 xc _ 5 z8n
(A.51) K2<§exp{—§x2—2—0}E<Vn2€ : )
and
o x8n i E(Yfe%{i) - o X;
E(V2e™") = -
i=1 Ee™ j=1
AR, 2, 1 av 3
< 2 exp{gaz +4—8:E ;EXZ + A1 R,

Hence, in the same manner as the proof of (A.50), it follows that
(A.52) Ky < AR, [1 — ®(x + ¢)] Whetr B,

Finally, as for the bound for K3, denote
2

(1) _
X, =X;1(2zX,; < 72 +COEY2)

Cauchy inequality leads to

Ky=P (ZX> Wt v, > vB)

<P(L 0> TR v V)
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cp(3o x> U v )

Vi, + cx
(ZQ:EX(l T), Vn>\/§>,

no (X2 89 2V, +c
P —_ > B
" ( ; Y2+ CQEY2 100 \/V2 + ¢o’ >VB
= K4+ Ks.
Recalling that B = max{2500, 200¢y }. we further have for |c| < z/5

(A53) K, <P <Z 20X > 0.9963:2>
=1
Clx_2

n
E 9 X 09957, 20X (Y
= exp{0.98622} g TR e

j#i
<AR,[1- (:13+c)]\1f exp{R:;},
LX) )
K; <P —————— > (0.884
- (2 V2T i~
n e X(2) 2
_ G pl§n (KPR emsrn i
~exp{0.7732%} " | &= Y2 + EYZ¢
(2)y2 ¢ (2)\2
Cya? LAt S
I E y2+cony2 X 1 E YZ+eoRY;
_exp{0.773w2}z {e L(joXil > 1, M) ]H ‘

i
<AR,[1 —®(z+ )]V exp{Rs},

where we have used the condition x L3 ,, < c1, for ¢; being some small enough constant, and
that

HEeme” < H {1 + Eehxl‘(l)]l(\x/Xi! > 17M)}

j#i 7
n (D)
< exp {ZEe%Xi 1(J2' X;] > 17M)}
i=1
<exp{ry} <exp{R,},
(X(z))2 Xizz
HEeYHCOEYZ < H {1 + EeYZeov? ]l(‘x/Xi‘ > 17./\/(0)}
JFi 7

n X2
<exp {ZEe viteoR 1 (|2 X;| > 1,Mc)}

i=1
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<exp{ry} <exp{R:},

Ry >y =Y B[ 1(la/ X > 1, M)]
i=1
(X(2))2
ZE{6Y2+COEY2 (|$/X|>1 M )]
=1
Therefore by (A.50), (A.52) and (A.53), we conclude

(A.54) P ((Sn,V;2) € Q3) AR, [1 — ®(x + ¢)] Whetr e,

Consequently, the desired bound (5.8) follows from (A.40), (A.43) and (A.54). The proof is
completed.

A.5. Proof of Proposition 5.5. The main idea is to apply the general Theorem 2.1. Re-
call the notation in (5.11), based on the one-dependent structure, {(X;,Y;)}* ;=1 Is asequence
of independent random vectors. Further, the moment condition in Theorem 3.1 indicates

ES?, a?
(EV2 N 1) = +0(5)-

Hence
P(Snl 2 ZEan + dln_a/2:L'Bn)
(A.55) 14+ O0(a?n= v
= Sznl iz~ al /7@ ) ;1 /2 +O(d1"_a/2w) :

We now focus on bounding the error terms involved in Theorem 2.1. Note that {&; }1<;<,, are
one-dependent sequence of random variables, and Rosenthal’s inequality yields for 2 < p <

4,
Bxr =gl ¥ g+ Y ¢f]
j€H,;odd JEH,; even
<r{ef| 3 o]+ 3 of]}
JjEH; odd JEH,; even
<4|( X Eﬁ?)p/2+< > Ef?>p/2+ZE|fj|”
JEH;odd JEH,; even jEH;

§Aall’npo‘/2.
In addition,
s < (B0 < [k Y Be] < A, B =Y EVE2 dddn
JjEH; j=1

‘ZEX Y2‘+‘ZEX3

3| < Adin.
i=1j€H;

Hence

Lo 4 (1 +2)*

L3, < Aa3n_T, 0, < Aa i) U <exp (Aa3:£3n_1/2).
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Thefore, applying Theorem 2.1 to (A.55) yields

(A.56) P(Su1 > aVi1 + din~*/%2B,,)
4 4 2,.2 3
B P VAR e Sy a‘z®  a’w
[1 | Tﬂpn)]e (1+02( =4 — +n15“)>

for z € (2,0~ min{n®/*,n(1=*/4}), where

(ZieHy‘ &)2
rpj <E [exp { ZiGHj (522 4 coEﬁg) }]1 (x‘ Zg;ﬂ &i

for some pre-assigned constant ¢y > 0 and constant ¢(p). The derivation of the upper bound
of r; ;j is rather complicated. We exploit a technical lemma A.5 whose proof will be provided
in Section B.4 to bound 7 ;.

> C(P)a2n1/2)] ;

LEMMA A.5. Let {X;}i1<i<n be a sequence of independent random variables with
EX; =0and E|X;[P < oo forp > 2. Denote S, = i1 X;, Vi2=>"" | X? and B2 =EV2.
Assume b > 0, A > 0. Then there exist positive constants cy and K depending on p and A,
such that

(A.57) E[e7om 1 L(b]Sn| > 1)] < Kbp(zn:E!Xi\p + (ESZﬁ).
i=1

Since {&; }1<i<n are one-dependent and Lemma A.5 is built for independent random vari-
ables, we separate the odd-indexed terms and the even-indexed terms to apply Lemma A.5.
Specifically,

(AS8) 1, <E [exp { le}‘qzizl({g O[_T_i ZEgz } <‘ EI;)dd& a2n )}

4 Sier,cvenil”
+E{exp{zieﬂj;f<gmEgz} U2

1€ Hj,even

I [T (Y B Y e

i1€H; ZEH]- ,odd 1€ Hj,even

1/2

a2n1/2

)

atx?

SC(P)Wa

where the second inequality is derived by applying Lemma A.5. Therefore, 7, = Z?:l Tej <

C(p)a*z* /n'~, which together with (A.56) yields the desired result (5.17).
In the same manner as the proof of (A.40), using Chebyshev’s inequality and Taylor ex-
pansion, it is easy to obtain (5.18). To avoid redundancy, here we omit the proof.

A.6. Proof of Proposition 5.6. We start with the error bound (5.19). Denote w; =

éj(l+1) — Eéj(lﬂ) for 1 < j < k. Therefore, {w;}1<j<) are independent random variables
with w; < 27 and Ew; = 0 for each j. Recalling the definitions in (5.12) and 7 = B3/ . For
dy = /-ipa2 with x, > 10, routine calculation shows

k
ZEw < B, <a?n'=®, din"*%zB, — ZEéj(l+1) > (kp — 1)a1wn177a.
j=1



REFINED GENERAL SELF-NORMALIZED MODERATE DEVIATION 15

Hence, it follows from Bernstein inequality (see for example, Theorem A in Fan, Grama and Liu
(2015)) that

k
P(Sn2 > din~*/?zB,) < P(Z%’ > (kp— 1)a1xn(1_a)/2)

=1
m%a%ﬁnl o /ﬁ;pxz
§exp< = a)>§exp<——).
6
3Bn2 + 3TKpa1TN 2

As for inequality (5.20), similarly,
N N 1
P(Sng < —din=e B, + 2(Vy — Vir), VA > —B,%)

Zj 1E (I+1)

k
y < —din a/2a:B +x
(Z §ia+1) 1 v

J=1
SC

where v; = A](l +1) fj(lﬂ), 1 < j < k, are independent random variables with ~v; —
Ery; <47 for each 7. Note that

1
‘72 B2
4 >
nl > 4 n

M;v

—Ey;) > din~*%2B, —ZE%)
]:1 7j=1

k

k k
ZE E’yj Z Z (% )E§ 1) S 4a%n1_°‘,

Jj=1

k
| ZEW‘ =& S By + 3 B esarl > )
j=1 =1 Jj=1

k
1
<D By =B
i=1

Again, Bernstein inequality leads to

2

]P’(S'ng < —din~%zB, +x(V, = Vp1), V4 > %Bﬁ) <exp ( - I{iz )

The proof is completed.

A.7. Proof of Proposition 5.7. Observe that for any a, b, 5, € R satisfying 3b > a? and
d > 0, we have for arbitrary x> > 3,

2 2
x/b+ by > \/x2 “ +62> = \/(x2 —3)% + (22 — 3)d2 + a® + 30
>\/:E2 3)da + a? + 2a+/d2(x? — 3) > a+ /(22 — 3)ds.
Denote H = {j(¢ + 1) : 1 <j < k}, the index set of small block terms. We set

a=Eji1) + & erny—1 + s, SY =8, -
b:= éJ2'(€+1) + §J2'(€+1)—1 + §J2'(€+1)+1= 0 1= (Véj)) = Vn2 — b,
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then {S,, > zV,} C {S’r(Lj) > (Va2 — 3)‘7,5”} by the above analysis. Moreover, S and ;)
are independent of ;1 1 since {&,1 <i<n} are one-dependent random variables. Thus it

follows from (5.22) that for € (c,+/logn, dya™ nl/g)
(A.59) P(Sn > 2V, max (€0 > T)

<> P89 = Va2 - 300 )B(l| > 7)

1€H

|4
< 4Zien Bl& [1

T

)
4 2

(1 +O( 1”/“’4 ))

/—\

)
1+ 2pn

VT3
=

(14 z)?
/2

J(1+2)t
SACZW

4 2

(1+0CTm).

< A€3/2(1_2p) (14

x
1= <I>(Jl +2_pn)
where p% ) is defined parallel to p,, and
) 1 E[(SY)] a2
(). —(Zn J 1 q) = —
P’ =3 (E[(Vrgl))z] 1) Pn(l +0( n ))

because E¢! < af and E¢Z > a3 for i > 1. Then (5.23) is derived.
Regarding the proof of (5.24), a more technical iterative argument will be exploited. We
have

> )
]P’(Sn > 2V, lrgjaéck i+l > 7')

< 30 (S = Va7 -V )Rl > 7)

nWeEH
4 4
<y Awp@gl) 2,/—352_3‘/752'1))
iwE€H "

11e€H
PS> Va2 = 3V, SIS =]
Y RS = Va2 6y ) P(lg | > 7))
is€H\{i1}
< Z qed -ty Y14 2) ( \/—V(“ )
11€H

(A.60) +>3 Y (AM> ( ¢—V>

. . . n
nw€H ;e H\{i1}
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Put u = [%] so that /22 — 3u ~ x//2 and we repeat the above procedure iteratively up to
u times,

gui EDY (AM)JP( Sinei) 2 \/aZ gV
+ Z Z (AM)u[p(S (SR \/731”/(21, i )

. X n
w€H i, E€H

As we have chosen o = 1/2 and |H| = k < n!'~® = {/n, it follows by (5.22) that for arbitrary
i1, i€ Hyand 1 < j < 3:2/6, we have for z € (cp\/logn,doa_2n1/8),

A

Z16H ZJEH

<f>[< S5 o5
4,2

<¥>{<F>]<<>>

at(l+a)t/ a*(1+2)* 4 i-1 T
- /(2+4p,) _
<A (A ) [1 (e zpn>

a”(I+x)” 11 z
<A T )T - o)
<A o)
for sufficiently large n and some constant A” depending on a, p, where pgf 174) ig defined
as

2£L'2

)

Glinis) )2

(i) . L (El(Sn )] _ a

Pn == m s 1) =1+ 0(
<E[<Véh~”>>2] )=

Therefore, by combining the upper bounds above we conclude

> )
[P(Sn > 2V, 1H§1jaé(k |£](l+1)| > T)

u—1 ' N . ea
< ZAa4(71114/-2:L")4 ' (%)3—1 [1 B ¢<m)] N (A%)

j=1

< |1 ()

for x € (cp/logn, dpa™ 2n1/8). The proof is completed.

A.8. Proof of Proposition 5.8. We apply Theorem 2.1 to estimate P(Sy; > xV}, 1 —
exBy,). As a preparation, we first calculate the relevant moments. By Lemma 5.1, there exist
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some positive constants A, As depending on aq, as and 7 such that for 1 < u < kq,
(A.61) E&;, +Enp < Ain®@tedpd Blg, P + Elnu[® < Agna@o0)ud,
In addition, by Lemma 5.2 and some routine calculations we can obtain
(A.62) \Efg] < Agn(o‘“‘l)ci’, \E{unil < Agn(o‘“‘l)ci’,

for a positive constant Az depending on a1, as and 7. To apply the moderate deviation theo-
rem for general self-normalized sums, it remains to estimate the error term

£2 1+x
o (g (e )]
T, [exp 2 T coFr? |f | >

We split the block I,, into odd-indexed terms and even—lndexed terms to construct a weakly
dependent structure so that Lemma 5.3 can be applied. To be specific, let 7; = {j : j is odd}
and J, = {j : j is even}. Correspondingly, we define for t = 1,2

> Vi K= 3 (Y +cBYS).

jel.NT: JjeL.NT:

In the same manner as (A.58), we have

A6 s ZE[p (49 )e (e 1) Z

As {rg .+t =1,2} share the same bound, we only present the analysis of r, , 1. Suppose
the cardinality of I, N J; is [n** /2] for simplicity. By Lemma 5.3, {Y},j € I, N J1} can
be approximated by a sequence of independent random variables {Y",1 < j < [n®'/2]}.
Denote

e /2] e /2]

j=1

It follows from Lemmas A.5 and 5.3 that

(1+x) |g1 1>]

(A.64) rout <E [exp ( ) >

(%5
+E[exp(4gl) (1+xyg1\ ) (3:Y; £77)]
(%5

2
gi)
<cfon (190)s
1

Cl+z)t  an®™ gpei_gpor
— p2(l—a—ai) 2 ’
where « should be chosen such that oy < a7. Therefore, by Theorem 2.1 and plugging in
the bounds given in (5.27), (A.61), (A.62) and (A.64), we can obtain there exist a constant ¢

1 +x |g1 1)] + alnal e4na1_a2naﬂ'

2 2

depending on dy, j11/pi2, a1, a2, « and 7 such that when e = alln_‘“/2 logn,
(A.65) P(Sk1 > aVia1 teaBy,)/[1— @ ()]
B (1+az)! 1+ (1+z)? (1+x) logn
=1+ O<n1—a—a1 + nl—a—a1)/2 + ne no1/2

uniformly for z € (0, co min{n(—a=e)/4 nat/2 pe/2 (logn)=1/2p1/4}). The proof of
Proposition 5.8 is completed.
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A.9. Proof of Proposition 5.9. Note that lim,_, ., E(X;|.%;) belongs to the tail o-field,
hence limy_, o E(X;|.%;) = E(X;) = 0 by the zero-one law. Therefore, we may write X; as

Xi= Zpi—uXi, where P;_y(-) =E(|Fi_w) — E(-|Fi_u_1).

u=0

Observe that,

"

19 1= || 32 3 Pemai|, < 30| 3 P
u=0i€H; u=0 icH;

For fixed u > 0, denote Z; = P;_, X; and &7, = .%;_,,. It is obvious that Z; € «7; and «7;,_1 C
7; for any ¢ > 1. Moreover,

E(Z|; 1) = E(Xi| 1) — E(X;i| 1) =0,

thus for any fixed u > 0, {(Z;, #%),7 > 1} is a martingale difference sequence. It follows
from Burkholder’s martingale inequality that

5|y 2] <cx]| Y 2
icH, i€H,

In addition, by conditional Jensen’s inequality and recalling the definition in (3.17), we obtain

2} <om S E(Z)).
icH,

E(Z}) = E[[E(Xi]#ie) ~ B(X:| Fiu)| |

4
= E{‘E[Xz =G Eimum1, €y Eimut 15 - - ) | Fimu] }
< E[(XZ - Gz( - Ei—u—1, E:—uvei—u—l—la s 7€i))4] = [94(u)]4
Thus, we obtain by condition (3.16) and Remark 3.2 that

Y| Y 2

o0
<C Zmlﬂa'le_al?m < Cyml/?
4 u=0

for C7 being a constant depending on a1,a2 and 7. Further, it follows from Minkowski’s
inequality and (5.38) that for sufficiently large n,

(A.66) 1Y 1a<]| V) lla + || V5 = Y la< CrmY/? 4+ mage™ ™" < Cymt/?,
(A.67) 1Y 12>] Y 2 = | Y5 = Y 2> eim!? — maje™®™ > Com!/?,

where C; and Cy = w; —nzaje @™ > w1 /2 are constants depending on 7, ov,wq, a; and
ag.

Denote py, = (Zf;ll E(};}};}H))/(Z;@:l E(Y?)). Note that
k
é%nzé’%kmSZE(ﬁ%gé%km:é%n,

i=1

and

E(ﬁ' ~j+1> - E(E‘Yjﬂ)
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Ed
—_

<

1 E[Y; (Y41 = Y1) + E[¥ia (- %)

<.
Il

+E[( - %) (Y1 = Vi )| ‘

k—

>_A

(193l 1951 = Yol + 5l - 195 = 31,
j=1

<.

%5 = Yilly - 151 = Yol
k <2élml/2 - maje"®™ + m2a%6—2a2mT> .

Immediately we have

k—1 k
(A.68) (Vifign) — Y E(ViYii) /<ZE(YQ2)> < Cye-Craam
i=1 i=1

with constants Cs and C depending on 7, o, w1, a1 and as. Now, for further investigation into
the 'ratio of Z;:ll E(YJYJH) against Zf;ll E(Y;?), we make use of the martingale structure
again by representing Y; and Y, as

=) > PiuXii  Yia= ), ZPZ uXi.

1€H; u=0 1€H ;11 u=0

Thus

SITRED 3D S 3 3 RSN |

11€H; i2€H j 11 u1=0u2=0

Note that P;, _,, X;, € Fi,—u, and for any {1 < iy — uy, lo < iy — ug,
E|Piy o Xa |70, | =0, B[P, 0, Xe|F0] =0.

Therefore, for i1 — u; # ia — ug, we have E [(Pi, —u, Xi,) - (Piy—u,Xi, )] = 0. Consequently,

> Y SRR (o)

ZleH ZQEHJ+1 u1=0

“+oo
gz Z Z4a’12-exp{—aé(u{+(i2—i1+u1)T)]a

’i] EHJ izEHj+1 U1:0

[E(Y;Yj41)| =

where we have used the fact that || P;, —y, Xi, ||2 < 04(u1) and || Py, —y, Xi, ||2 < O4(ia — i1 +

ul ) .
It is trivial to see from the integrability of the function e~%*" that

(A.69) >y i 4d% - exp [— d (u{ ¥ (i — i1+ ul)Tﬂ

7;1 EHJ ’igEHj+1 U1:0

oo 2m

SZZK'eXp[—CLé(uT—F(ﬁ—FU)T)]

u=0¢=1
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2m e}
< <Zf€_“w> (ZE‘“'Z“T> <,
/=1 u=0

for some constant C5 depending on «, a1, as and 7. Finally, as a result of (A.67), (A.68) and
(A.69), we obtain

(A.70) k] ==

k—1 o
> E(YiYi41)
i=1

for large enough n, where Cj is a constant depending on 7, o, w1, a; and as.
Now we are ready to apply Theorem 3.1 to the self-normalized sum

.
Tk _ Zj:l Y;
(b y2)e

Notice that {}7j}1§ j<k are one-dependent random variables and the bounds in (A.66), (A.67)
and (A.70), i.e., the conditions in Theorem 3.1, are satisfied. Recall that m = [n®] and k =
[n'~%]. We obtain by (3.2) that there is a constant dy depending on 7, «,w1,a; and as, such

that
P(Ty > ) = [1 -® (%) (1 +O<nl<:7f>j4>)

~[1-ow] (1+o( S L),

uniformly for z € (0, do min{n(1=®)/8 n®/2}). This completes the proof of Proposition 5.9.

A.l({. Proof of Propositi0n~5.1(). For simplicity, we denote V2 = Z;’?Zl V7 and V2 =
Z?:l Yj?. Recall the constant (' in the lower bound shown in (A.67). Set

B= {max!Y Y|< Vk_g n}

1<j<k n?’ 2

Within the set B3, it holds that

o

Vi = Vil S VHVE = V2 <72V, Z2[Y]+n

<2 2kY2 4205 T < (205 4 2)n e,
hence when n is sufficiently large,

(S5 )V~ (S ¥)%
Vka

T~ 1| =

Sy -1 (SalBl) -
- Vk ‘N/k Vk
< C(n—l/Zk.n—2 + k1/2n_1/2n_g_%>

< 20N> <20n~!.
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Therefore,

(A71) P(T} > x) < P(Tk >z, | T — Ti| < 20n—1) + P(B°)

< P(Tk >z — ZC’n_l) + P(B°),
and similarly,

(A72) P(T > 2) 2 P(Tx > 2, B) > P(Tj > o+ 2Cn”", B)
> P(Tk >+ 2Cn—1> —P(B°).

As for the bound of P(53¢), notice that
k
P(B°) < Z (|v; = Y;| >n72) + P(VZ < Cin/2).
By Chebyshev’s inequality and (5.38) with » = 2, we obtain
k
ZIF’(!Y] - f/]‘ > n_z) < nl_an4+2aa%6_2“2nm < Ce ®m"7,

In addition,

k/2
P(V2 < C2n/2) <P(ZY% 1<C'2n/4)—|—IP)<ZY2£<C’2n/4>
/=1 /=1

where, without loss of generality, we assumed that k/2 is an integer. Denoting W, =
- 225_1 + E(Yzzz_l), 1<0<k/2, (A.66) suggests that

Wy <E(Yy_y) < Cim, E(W,) =0,

k/2 k/2 k/2
and Y E(W7)=) Var(Yy_ )<Y E(Ya ;)< Cikm®/2.
/=1 =1 /=1

Observe that {Yo,—1,1 < ¢ < k/2} is a sequence of independent random variables. It follows
from Bernstein’s inequality and (A.67) that

k)2
(ZY% 1< )
k/2 &2 k/2 k/2 .
(ZWp ——n—l—ZE (V2_, ) <P<;W42 fn)
B ((C3n)/4)° o lea
<exp 2(@12m-6~’22n/4+éfkm2/2)}SeXp{ en

for some constant C' depends on 7, «t, w1, a1 and ao. By the same token,

k/2 -

P(ZY22£ < %n) < exp{—Cn'~*}.
=1
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Overall, we obtain
(A.73) P(B%) < Ce™ """ 4 9¢=Cn" ",
The proof of Proposition 5.10 is completed.

A.11. Proof of Theorem 4.1. Define f(z) =a1l{|z|<7}+71l{z>7}—71{x < —7}.
In view of the expression shown in (4.10) and the notations presented above Theorem 4.1,
the main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
U> and error terms L3 ,, and 12, under fourth moment, which are defined by

ElS(Y) — il | ES(Y)—ul?

L3n:

S BT
E(f(Y)— )3
v —exp{(ai)?’ 3n 4”(;%‘%
e E[(f(Y) - ﬂ)({(Y) — )% )}
0105
(ot o)t (B0 It B =
(f(Y) — 1)’ _% ) — il
—i—nE[exp{ %}]1(( T) = N )],

(f(Y) - w2 +o3

where v = (1 + £).

Throughout the rest of the proof, A is an absolute positive constant which may vary at
each appearance. When the higher moment E[Y 4] < oo is assumed, we can figure out more
accurate estimate for the bias-corrected term W . Let us collect the bounds for some crucial
quantities in the proposition below. The proof of Proposition A.1 will be given in Section
A.l6.

PROPOSITION A.l. IfE|Y|4 < 00, then we have there exists an absolute positive con-
stant A such that

AE|Y |4 AE|Y |4 ~ 4

(A.74) jof — o?| < ’2’ : |a%—cr?|s# |u—u|s’—3’.
T T T
Moreover, when T satisfies (4.11), we have
2 442
4 AEY]Y)

A.75 ‘—2 — 1‘ <=
( ) o2 =T 26

and there exist absolute positive constants A and ag such that

‘ 1-®(Zz+c) 1‘ _AQ+ z)/nE|Y|*

(A.76) 30

oT3
3
for0<x < aoﬁ, and

Al +2)*ElY|*

(A.77) R, < .

no

In addition, there exist positive constants a, and C depending on o, E|Y |3 and E|Y |* such
that
3 2

(A.78) \P;:exp{—%}[lﬁ-Ol(%ﬁ-%)}
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for2<z<a min{\T/—%, (/nr)'/3, 7312}, where Oy is a bounded quantity such that |01| <
C.

We next consider two cases of 0 < x < 2 and x > 2, separately. First for 0 < x < 2, it is
immediate that 1 — ®(x) > 1 — ®(2). Moreover, it follows from Proposition 5.1 and (A.76)
that

P(S%, > ) = [1 — &(x)] [1 + 0(% + g)]

Since the bias term exp{—%} 14+ 0( \/_) for 0 < x < 2, we obtain
" EY —p 1 n
(A79) PS5, >z)=[1—®(x)] exp{ - #} [1 + 0<% v T_*/;ﬂ

for 0 < x < 2, which completes the proof of (4.12) for 0 < x < 2. Then we deal with the case
of x > 2. Applying Theorem 2.1 to (4.10) yields

* - _ v2 * O1R @
(A.80) P(S:,, > ) = [1 @(01 v+ c)] Ure (1 +0u1+ 7 x)Lg,n)
uniformly for |c¢| < z/5 and x > 2 satisfying (2.6) and (2.7). Note that (2.6) and (2.7) are

4
satisfied when 2 < z < agﬁ for some constant as > 0. By plugging in the results in
Proposition A.1, we can obtain

5210wt 25
[1+01<wf+ﬁ +%4+%+f_§>}

for 2 < x < agmin{r3n=12, (\/n7)"/3,n/% r3/2}. Observe that when 7 satisfies (4.11),
732 > O(n'/*) and 2 < A(Hx)\/ﬁ for z = O(y/n). Moreover, by the basic inequal-

ity that a + b > (a 2b)1/3 for a > 0 and b > 0, wehave\/_ <z —i—x‘/_ and (y/n71)'/3 >

min{n'/4,73n~1/2}. Hence the desired result (4.12) holds for 2 € (2, co min{n'/4, r3n=1/2}),
which together with the result (A.79) for 0 < z < 2 completes the proof of Theorem 4.1.

A.12. Proof of Theorem 4.2. Define g(Y') = (Y — p)1{]Y| < 7}. Recall that

Se 4§
(A.81) P(UZ, > ) = IP( > Z—i:z)

where

o N~ ID) —po pee NS OODP s Ve
Sn_; N (V=) =24 d 6= :

no (o3
i=1 4 3

The main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
W7 and error terms L3, and 12, under fourth moment, which are defined by

Elg(Y) — pol? N Elg(Y)]

L n =

> Jno? Vo

- o3 3 —1ja(4 3E(Y) — o)’
\I/x—exp{(ag) x°n (37 -7
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E[(g(Y) - Y))2
242 [(g( )U;;%)(g( ) ])}
R, = < nf”)4 (Elg(Yg)g— pio|* Elgg)l“)

(9(Y) —pmo)* of 9) — ol
e o (R S

where v = 2(1+ 2).

When the higher moment E[Y%] < oo is assumed, we can figure out more accurate estimate
for the bias-corrected term W . Let us collect the bounds for some crucial quantities in the
proposition below. The proof of Proposition A.2 will be given in Section A.17.

PROPOSITION A.2. IfE|Y|* < oo, then we have there exists an absolute positive con-
stant A such that

AE|Y [ AE|Y | E|Y [
a8y - < B0 o< B < B0E
Moreover, when T satisfies (4.11), we have

2 A ElY 4N\2
(A.83) ‘%—ﬂé%,
or

93
and there exist absolute positive constants A and ag such that

1—&(Zz+0) B 1‘ _Aa + z)/nE|Y|*

A.84 (
(A.84) 1—®(x) oT3
for0<x < aoﬁ, and
Al E|Y |
(A.85) R, < A0+ $)4 YT
no

In addition, there exist positive constants a, and C depending on o, E|Y |3 and E|Y |* such
that

* :EgE(Y B M)g :Eg 5E2
(A-50) v =ew{ - o 140 (= + )
for2<z<a min{\T/—%, (/nr)'/3, 7312}, where Oy is a bounded quantity such that |01| <
C.

We next consider two cases of 0 < x < 2 and x > 2, separately. First for 0 < x < 2, it is
immediate that 1 — ®(x) > 1 — ®(2). Moreover, it follows from Proposition 5.1 and (A.84)
that

P(UZ, > 2) = [1 - B(x)] [1 + 0(% + g)} .

Since the bias term exp{—%} =1+ O(ﬁ) for 0 < z < 2, we obtain

(A8 P(U3,>2)=[1-0@)]exp{ - %} 1+ O(% + g)}
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for 0 < z < 2. Next we deal with the case of x > 2. Applying Theorem 2.1 to (A.81) yields
(A.88) PU*, >z)=|1 - &(Zz+ 5)} U¥ 01 Re (1 +Os(1+ ﬁx)Lg,n>

’ o3 o3

uniformly for |§| < x/5 and = > 2 satisfying (2.6) and (2.7). Note that (2.6) and (2.7) are
satisfied when 2 < z < aQ% for some constant a2 > 0. By plugging in the results in
Proposition A.2, we can obtain

P(U;, > ) =[1 - ®(x)] exp{ - % }
oS T S )

for 2 < x < agmin{r3n=12, (\/n7)"/3,n/% 73/2}. Observe that when 7 satisfies (4.11),
732 > O(n'/*) and 22 < A(Hx)\/ﬁ for z = O(y/n). Moreover, by the basic inequal-

ity that a + b > (a 2b)1/3 for a > 0 and b > 0, we have f <T 4 x;éﬁ and (y/n1)'/3 >
min{n'/4,73n~1/2}. Hence the desired result holds for z € (2,02 min{n'/4, 73n"1/2}),

which together with the result (A.87) for 0 < = < 2 completes the proof of Theorem 4.2.

A.13. Proof of Theorem 4.3. Recall that f(z) =z1{|z| <7} +71{z >7} —71l{z <
—7}. In view of the expression shown in (4.10) and the notations presented above Theo-
rem 4.1, the main idea is to apply Theorem 2.1 and estimate the corresponding error terms
L3, ¥} and R, which are defined by

BIf(Y) =i | BIF(Y) — pf

bon = T N
9@:=exp{<§§ﬁw3n—w2(gys@LiQ%%:gQi
. e
9BV :1)c(r§(Y) u)]>}
Rm:(ljgﬁ<EUTYé—ﬂP E|f(Y |>

01

(f(Y) —j)? f) —al
+nE[exp{(( Y) = )2 —|—a . 1}11(( T) Jno1 )]7

where v = (1 + £).
We collect the bounds for some crucial quantities in the proposition below. The proof of
Proposition A.3 will be omited since it is similar to the proof of Proposition A.1.

) —
o3
72
o2
2
-2

PROPOSITION A.3. IfE[|Y|?] < oo, then we have there exists an absolute positive con-
stant A such that

(A.89) E[f(Y)—pf <AE[Y], E|f(Y)—jal* < AE[Y]?
AE|Y |3 AE|Y 3 E|Y |3
(A.90) 07— o2 < 2EXT yp o L ABIVE |u—ﬂ|s’—2’-
T T T
Moreover, when T satisfies (4.14), we have
AE[Y]?)?
g2 A

)

(A.91) ‘ ‘
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and there exist absolute constants A and ag such that

1-®(Fa+c) 1‘ _AQ+ z)y/nE[Y[3

A.92 ‘
(A4.92) 1—®(x) oT?
f0r0<w§aoﬁ, and

Al SE|lY |3
(A.93) R, < AU+ EV]"

- a3\/n

We next consider two cases of 0 < x < 2 and = > 2, separately. First for 0 < z < 2, it
follows from Proposition 5.1 that

(A.94) P(S*, > ) — [1 — (Lo c)} ‘ < ALs.,.
) 0-1
From Proposition A.3 that when 7 satisfies (4.14) with some large a;, we can see that
AE|Y?
(A.95) L, < 037\/5,
1-®(Z2z+c AynE|Y[?
(A.96) and ‘#—1&@.
1—®(x) oT?
Therefore, it holds for 0 < x < 2 that
B(S%, > ) EYP | VAEYP
A.97 2 Y 140 ( )
(A.97) 1—®(x) T 03\/ﬁ+ oT?

with |O;] < A. The desired result (4.15) has been proved for 0 < = < 2.
Now we proceed to prove for x > 2. Applying Theorem 2.1 to (4.10) yields

(A.98) P(S%, > ) = [1 - @(?x + c)] U¥OrRe (1 +Oo(1+ ?x)Lg,n)
1 1

uniformly for |c¢| <z /5 and = > 2 satisfying (2.6) and (2.7). When 7 satisfies (4.14), we can
obtain from Proposition A.3 that |0 /09 — 1| < A and

1-®(Za+c) 1‘ _ A(l+2)V/nE[Y]

A.99 ‘
(A.99) 1—®(x) oT?
for x < agﬁTTC;,Ia, and

Al SE|Y|?
(A.100) R, < (L+2)EY]"

- a3\/n
Moreover, since |£| < 1/5 as 7 satisfies (4.14) and = > 2, we have
A3E|Y)? }

o3y/mn )

In addition, note that the conditions of x shown in (2.6) and (2.7) are satisfied when 0 <

(A.101) v gexp{

z < az min{%, \/ﬁ%l‘;lg} Consequently, the desired result (4.15) for z > 2 are derived by
substituting (A.95) and (A.99)-(A.101) into (A.98). This completes the proof of Theorem
4.3.
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A.14. Proof of Theorem 4.4. Define g(Y) = (Y — )1{]Y| < 7}. Recall that

(A.102) P(UZ, > o) = ]P(Sf;/: % ?w)
n 3

where

o - Q(Y;) — Mo 0\2 - [g(}/;)]z \/ﬁ,uo
S, = —, (V)" = and = .
" ; V/nos (Vi) ; naz o3

The main idea is to apply Theorem 2.1 and estimate the corresponding bias-corrected term
W7 and error terms L3, and 12, under fourth moment, which are defined by

_ Elg(Y) —mol® | Elg(V)P

L3 N N
% )3
U = exp {(U—i)?’ﬂ:?’n_m <§73—E(9(Y2_§ o)
— 942 El(g(Y) — M02)(9(Y))2] ) }

_ (+a2) (Elg(Y) — po|* | Elg(Y)]*
n o3 0y
(9(Y) — mo)? o l9(Y) — pol }
+nE|ex {7—}1 l4+z)—F————>1)|,
[ PUgmp e oM Y
where v = 2(1+ 2).
We collect the bounds for some crucial quantities in the proposition below. The proof of
Proposition A.4 will be omited since it is similar to the proof of Proposition A.2.

PROPOSITION A.4. IfE[|Y|?] < oo, then we have there exists an absolute positive con-
stant A such that

(A.103) Elg(Y) — pol®> < AE[Y]?, Elg(Y)’ < AE|Y P,
AE|Y|? AE|Y]? E|lY|3
(A.104) 03— o2 < 2L jr oy LABIYE ) L BT
T T T
Moreover, when T satisfies (4.14), we have
2 A ElY 3\2
(A.105) ‘U—;—l‘g%,
o3 or

and there exist absolute constants A and ag such that

1-®(Zx+9) B 1‘ _ A(l+2)/nE|Y?
1—®(x) -

(A.106) | o

forO<ax < aoﬁ, and
3 3
(A.107) R, < AU+ 2BV
a3\/n

We next consider two cases of 0 < x < 2 and = > 2, separately. First for 0 < z < 2, it
follows from Proposition 5.1 that

(A.108) P(UZ, > x) — [1 - @(?m + 5)} ‘ < ALs,
3
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From Proposition A.4 that when 7 satisfies (4.14) with some large a1, we can see that

AE|Y?
( ) 30 <73 7
1-®(Ztz+0 Ay/nE|Y[?
(A.110) and ‘y_l‘gwl
1—®(x) or?

Therefore, it holds for 0 < x < 2 that

PU, >z ElY |3 E|Y[3
Win2) o, (EE | AV
1—®(x) o3y/n oT

with |O;] < A. The desired result has been proved for 0 < x < 2.
Now we proceed to prove for z > 2. Applying Theorem 2.1 to (A.102) yields

v 48)| Wi e (14 051 + Z—iw)L&n)

(A.111)

(A.112) P(U;, >2) = |1 - o(2

03

uniformly for |¢| < /5 and x > 2 satisfying (2.6) and (2.7). When 7 satisfies (4.14), we can
obtain from Proposition A.4 that |o3/04 — 1| < A and

‘1 — ®(Zx+9) ~ 1‘ - A(1+z)/nE|Y)?

A.113
( ) 1—®(x) oT?
for:ngagﬁ,and

Al SE|Y]3
(A.114) R, < AL+ 2] EV]

< 3/
Moreover, since |g| < 1/5 as 7 satisfies (4.14) and = > 2, we have
{ Az3E|Y ] }
o3ym )’
In addition, note that the conditions of x shown in (2.6) and (2.7) are satisfied when 0 <

x < ag mm{ E‘Y‘g , \/ﬁlel'*} Consequently, the desired result (4.15) for = > 2 are derived by

substituting (A.109) and (A.113)—(A.115) into (A.112). This completes the proof of Theorem
4.4,

(A.115) v <

A.15. Proof of Theorem 4.5. Notice that ®~1(1 — a/2p) = 2(1 + o(1))+/log 2p/a =
o(n'/%) lays in the range of Theorem 4.3, hence by Theorem 4.3,

P P
Z [ pi < Lj)+P(u; > Uj)} < 221?(5:7“ > & 11— a/2p)) =a+o(1),
J=1 j=
which completes the proof of Theorem 4.5.
A.16. Proof of Proposition A.1. From the definition of f(-), it is obvious that | f(Y")| <
Y| and |f(Y) — Y| < |Y|L(]Y| > 7). First for the bound for |0 — 02|, it holds that
joF = o®| = [E(f(Y) — 4)* — E(Y — p)?|
<E{@Y]+2EY)(Y[L(Y]>7) +E[Y1(Y]> 7))}
AE|Y |4
< .

72
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Similarly, we can obtain the same bound for |03 — o2|. Since |f(Y) — Y| < |Y|L(]Y] > 7),
we have

| —pl=[Ef(Y) - EY]

B[
3

<E[f(Y)-Y[<E[Y[L(Y]>7)] <
As for (A.75), it follows by (A.74) that when 7 satisfies (4.11),
‘0_5 3 1‘ _E) -] - EI(f(Y) — )2

2 2

01 01
(e (u—p)?
o T g2 _ AR
Aln— )2 A(E|Y]*)?

2.6
Now we proceed to show (A.76). First for 0 <z <2, itholds that 1 — ®(2) <1 — ®(z) < 1.
Then we can deduce that

‘ 1-@ (g—fzn +¢)

30 1(<A(c1> —x—i—c) CIJ(w)‘

(A.117) <A[(O_—1—1):L"+c]

Recalling that |c| = \ﬂ“ Al < AWE‘Y‘ and |28 — 1] < ]Z—i -1 < A(Egr)z. Therefore, it
follows that for 0 < x g 2

1-0(Za+0) EYY? Y]
‘ 1—®(2) _1‘§A< o276 * or3 )

_AVREY !

oT3

(A.118)

where the last inequality is derived by using the fact that \/ZET'B/ E > AGYE gor 7 satisfying

- 0-27-6
(4.11). For 2 > 2, it holds that when z < aoﬁ,

‘1_1@_(% ‘<A[ p 1):E2+caz] exp{A[(Z—%—l)$2+cx]}
< A[(O_—1 — 1)z + cx]
A:L"\/_E|Y|4
< 77_3

The above results for the two cases of 0 < x <2and 2 < x < a0E|Y|4 yield the desired result
(A.76).
Next we proceed to prove (A.77). Recall that

(1+2)'Ey|*

(A.119) R, <A . + 1y,

no
where
(f(¥)—p)? o3

R A e e

S0 gl )

ry =nE [exp { NG
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The goal is to upper bound the exponential part. By (A.75) and the range (4.11) for 7, we can
obtain

PO @) o, () )
(fY)=p)?2+05 of = (f(Y)—p)?+03

» ()~ )
(f(Y) = @)+ ki (f(Y) — 1) + ko
A
(A120) ST MO ) ) @)
where
4
=20 ) < AL
/{220%4—(;2—,11)221402—%21402

for 7 satisfying (4.11). Observing that for any x € R,
1+ mz+roa?>1— L

hence when (4.11) hold with large number ¢; such that n% < K9, We obtain

(A-12D FO) —pitad o2 =

Consequently, it follows that

1+ ) B(S(V) = AlY) _ AL +2)'B]Y ]!
noi - no4
which combining with (A.119) yields the desired result (A.77).
Finally, we deal with the proof of (A.78) when 7 satisfies (4.11). It follows from (A.75)
that

(A.122) ‘(@)3_1#%.

o1 o276

rng(

)

Since v = 1(1+ £) and |¢| < A*f‘“ Al < A\FE‘Y‘ < Ay for some absolute constant Ag
when 7 satlsﬁes (4 11), we have ]c]/x < Ay/2 for x > 2 and 7 satisfying (4.11). In addition,

"Y— 1‘ B AynEY |

(A.123) 5

- zoTd
and we can obtain from (A.75) that

‘E(f(Y) — i)’ EY —p)’ ‘

o3 o3
E(f(Y) = )° —E(Y — p)?| 11
= o3 + |[E(Y — p)’| U—i},—g
If‘3|1/|4 E(Y — p)?|(E]Y]D)?y /1
NERE N RO)
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Similarly,
A125) HMﬂm—quﬁ—Mﬂ_M{;m1:Oe>
2

Then the desired result (A.78) is derived by plugging in the above bounds in (A.122)-
(A.125). This completes the proof of Proposition A.1.

A.17. Proof of Proposition A.2. Recall the definition that g(Y) = (Y — p)1{|Y| < 7}.
First for the bound for |02 — o2, it holds that
0% — 0®| = [E{[g(Y) = po — (¥ = )][g(Y) — pro + (Y — )]}
S ATE{(IYP + ulY? + EIY P + [EY?) (Y] + |ul + E[Y]) }
AE|Y |

<
= T2

Similarly, we can obtain the same bound for |03 — o%|. Moreover, we have

E[Y|*
3

lnol = [Eg(Y)| <E[lY — p|1{[Y[>7}] <
As for (A.83), it follows by (A.82) that when 7 satisfies (4.11),

‘ﬁ_q:wwm—wﬂ—mmmﬂr

2 2
03 03

2
__ Mo
AE[Y ]
o2 _ AEY]

T2

<

Q |7<:
S

wr

A _ AELY|')?
o2 — g26
Therefore, (A.84) can be proved by the same procedure of proving (A.76).
Next we proceed to prove (A.85). Recall that
(1+2)'ElY|*
— +r

no

(A.126) <

(A.127) R,<A

T

where
(9(Y) — mo)* o l9(Y) — ol
r, =nlk|ex {7—}1 l4z)———>1)|.
‘ [ U2+ a7 o3 (@+2) Vnos )
The key point is to upper bound the exponential part. By (A.83) and the range (4.11) for 7,
we can obtain

(9(Y) —po)* oi _ ,(9(Y) —po)?
(9(Y)?+0f of = (9(Y))*+ 0}

4 (9(Y) — po)®
(9(Y) = 0)? + r1(9(Y) — po) + k2
A
A.128 = ’
(A.128) 1+ r1(g(Y) — po) = + r2(g(Y) — o) 2
where
L AE[Y[*
K1 =2uo satisfying |k < e
A(E[Y[*)?

Ko = 03 + (p0)? = Ao? —
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for 7 satisfying (4.11). Observing that for any x € R,
12
1+/€1w+52w221——1

)

4/42

hence when (4.11) hold with large number ¢; such that /-i% < Ko, We obtain

(9(Y) = o) o3
(129 (V)P +0? 03 =

Consequently, it follows that

(1+2)'E(lg(Y) — Mo|)< A(l+z)'ElY*
noj - not ’

which combining with (A.119) yields the desired result (A.85).
Finally, we deal with the proof of (A.86) when 7 satisfies (4.11). It follows from (A.83)
that

(A.130) ‘(%)3_1%%,

o3 - o276

Ty <A

Since y = 3(1+2 ) and || < A‘f‘“‘)' < AWE‘Y‘ < Ay for some absolute constant Ay when
T satisfies (4 11), we have |§|/x < < Ap/2 for : :L' > 2 and 7 satisfying (4.11). In addition,

1 A\/_ ElY [
-3/ <

(A.131) ~
roT

and we can obtain from (A.83) that
‘E(Q(Y) —po)®  E(Y —p)? ‘

O'g o3
_ 3 _ _ 3
o3 g3 g

E[Y|' | [E(Y — p)?’|(E]Y]")? 1
(A.132) < A( e 576 ) - O(F)'
Similarly,

E[(g(Y) — Y))? EY —p)? 1

A3 L) )] B S0 (1,

Then the desired result (A.86) is derived by plugging in the above bounds in (A.130)-
(A.133). This completes the proof of Proposition A.2.

A.18. Proof of Corollary 2.1. We apply Theorem 2.1 with > =EX?, ¢co =0 and ¢ =
0. In this case,

. EX3 2E| X, |3 41+ 2)'EXY
\I’xzeXp{W} s Lan < o3/n x,1§n2—04-
For = < tgo/n/4, we have 2x/(o+/n) < tp/2 and thus
X2 22X,

r%l:E[exp{min( )}]l(\(1+w)X1\>a\/ﬁ)]

o2’ oyn

§E[exp{2f§ﬁl }11(\(1 +a)X| > a\/ﬁ)}
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<E[eM/21{(1 +2)|X1| > ov/n}]

< (L4 2)'n B[ Xy |*e /2]

< Oty E[e30X /4] (1 + 2)'n =2
Therefore it follows from Theorem 2.1 that

P(S, > xo/n) :eXp{:EgEX% —|—O<(1 +x)4>}[1 -|-O<1 —|—ZE>]
1—®(2) 603y/n n VLD

uniformly for 0 < z < O(n'/?). Hence (2.8) holds for 0 < z < O(n'/*). This completes the
proof of Corollary 2.1.

APPENDIX B: ADDITIONAL LEMMAS AND PROOFS
B.1. Proof of Lemma A.1. Recall the notation W; = 22.X; — 22Y;2. Define

X’ 2y 2
Vi =min{ ——— 5 + cpz“EY;*, 22 X; 5.
’ {Yi2+60EYz‘2 T T

Observe that W; <wv;. For 1/4 <A <3/4and k € {0, 1,2, 3}, by the elementary inequalities
|s|Fe™* < ¢y (k) and sFe* < cy(k)e® for s > 0, we obtain

(B.1) E{W;* M 1(|(1 4 2)X,] > 1)}
< AE{eOYWI1(](1 + 2) X, > 1)}
< AE{e”1(|(1+2)X;| > 1)} + 0y5)
< AR, ;,

where the last inequality comes from the fact that cpz?EY;2 < 1 /4 for x satisfying (2.7).
Additionally, there is a constant A;(k, so) such that |s|¥e® < Ay (k, s) if s < sq. Hence,

E{[Wi[*A (1 + 2) X[ < 1,[(1 + 2)Yi| > 1)}
<AP(J(1+42)X; <1, |1+ 2)Y;| > 1)

< A(Sx,z
For simplicity, denote /; = {|(1 4+ =) X;| < 1,|(1 +2)Y;| < 1}. We have
(B.2) E{W;*eMWe} = B{W;* MW 1 ()} + O(1) R, 4,

where and hereafter O(1) is a bounded quantity.
By Taylor expansion,

(B.3) E{M L)} =1+ AE{W;1 (L)} + )\;E{Wf]l(ui)}

+ %3E{Wi3ﬂ(ui>} + O(DA'E{W 1(2)}-

The analysis for the terms on the right hand side of the above equality is similar. We calculate
the third term for example. Notice that

E{W;21(U)} = 42°EX;? — 42°EX;Y;? + 2 B{Y;* 1(U)}
—42’B{X21()(1 +2) X > 1)}
— 4 B{ X 1(|(1 +2) X3 < 1,|(1 + 2)Y;| > 1)}
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+4PE(GYL((L+ )X < 1,|(1+2)Yi > 1)}
+HAPPE{XGYPL(/(142) X, > 1, |(1+2)Yi < 1)}
+4PE{XGYPL(|(1+2) X, > 1, |(1 4+ 2)Yi| > 1)}

By the basic inequality ab? < a> + b? for a > 0,b > 0 and Chebyshev’s inequality, we obtain
E{W:?1(U;)} = 42°EX;? — 42°EX; Y% + O(1)6,4.
In the same manner,
E{W;1()} = —2°EY;> + O(1)d,;,  E{W;1(Uy)} = 82°EX,* + O(1)d,4,
and IE{WA1(U)}| < O(1)64.
Therefore (B.1)-(B.3) yield
(B.4) Ee =1 — A\’EY;? + 20%2 EX;?
— 222 EX, Y2 + %A%%Xﬁ +O(1)R, ;.
Because x satisfies (2.7),
B —1]<1/2.
Furthermore, by Lemma A.2 we have
B — 1% < A[m‘lE{Yfl]l(Kl +2)Y| < )Y + 2 B{XA()(1 4+ 2) X5 < 1)}
+ 2B{(X:® + Vi) L)} + Rai]
< AR, ;,

Because |log(1 + a) — a| < a® whenever |a| < 1/2, it follows from (B.4) that
4
log EeMi = —\2?EY;? + 2A22°EX;% — 2222°E X, Y2 + g)\?’x?’EXi?’ +O(1)R, 4,

which completes the proof of (A.8). By the same token,

YW} + O R,

= —2’EY;? + A’ EX? — DPEX, Y2 + AN 2PEXS + O(1) Ry,
EW;2eMWs = B{W;2(1 + A\W;)1(U;)} + O(1) Ry

= 42°EX;? — 423EX; V2 + SAZPEX2 + O(1) R, 4,
E|Wi[*e = E{|Wi 1)} + O(1) Ry s

=0(1)2*(E|X;° + E|Yi]®) + O(1) R,

EW; M = E{W; (1 + AW; +

By a similar procedure to the proof of (A.8), we arrive at (A.9)—(A.11). The proof of Lemma
A.1 is completed.
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B.2. Proof of Lemma A.3. Recall the definition m (\) = >, log Ee*"V". Note that

m(As) is well-defined under condition (2.3) and m” (\) = """ | VarW; > 0for A > 0, 2 # 0
and nondegenerate X; and Y;. It follows from Lemmas A.1 and A.2 that for 1/4 <\ <3/4
and z satisfying (2.6)—(2.7),

(B.5) m'(\) =Y EW;e*: /Ee:
=1

= (AA—1)2” + 42 %% Y "EX;® — 4\ ) "EX, Y + O(1)R,,
i=1 i=1
where |O(1)| < A for some absolute constant A. Therefore, under (2.6) with sufficiently
small constant c¢;, we have for |§(z)| < 22 /2 that
m'(1/4) < 2 +6(x) <m/(3/4),

which combined with the fact m”(\) > 0 implies that the equation m/()\) = 2 + §(x) has a
unique solution As such that 1/4 < \s < 3/4. Furthermore, by virtue of (B.5), it holds that
1 (=)

- 2\ 2 3 V2 —2
=5+ N x;EX, +)\5w;EXZYZ +0(1)z72R,,

and hence (A.15) follows. Again by (B.5) and 1/4 < A5 < 3/4, 1/4 < A5, < 3/4, we obtain
A5 — As| < A(272[6(x) — So(2)| + 2Lsn + 2 Re).

Therefore

d(z) — do(z

As — A5y — ) ‘ < A(‘)\g — )\50’wL3,n + w‘2Rx)

< A(:L'_2Rx +|d(x) — 50(:L')|:L'_1L27n).

Thus we complete the proof of (A.16). The result (A.17) directly follows from (A.8), and
(A.18) follows from (A.16) and (A.17). This completes the proof of Lemma A.3.

B.3. Proof of Lemma A.4. In the sequel, C, (', Cy, ... are positive constants that may
depend on w and 7y and may take different values at each appearance. Note that (A.31) is
a special case of (A.33). Denote Z; = YZ-2 — IEYZ-2 and G; = 2rzX; — wm:QYiQ. Regarding
(A.33), we have

(B.6) E{(Vnz — 1) Gz}
n 2
:E{ ZZ ezfle}
(X2)
EZ2 Gi EZ; Gi RZ.eCi
_EeE {z CRDVE s o }

Z2 Gi EZ;
< Eeim @ [Z EeG <Z Eeg ) }

We first treat E[Z e“i]. Recall that 0 < r < 1 for some number (. For z satisfying (2.7),
22EY;? < 1/16 and coz?EY;? < 1/4. It follows from the basic inequality |e* — 1| < |s|esV?
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that
(B.7) 2? B[ Zie% 1 (x| X;| < 1,2]Y;] < 1)]|
= 2%|E[Z; (1 + O(2|X;| + 2*Y?)) L(z] X;] < 1,2]Y;] < 1)]|
< C{2*E[(Y? + BY?)1{z|Yi| > 1}]
+2°E[(Y? + EY?)1{z| X;| > 1,2]Y;| < 1}]
+a?B[(Y7 +EY?) (2| X + 2V 1 (2] Xs| < 1,2]Vi < 1))}
< C2*(EB|Xi] + EYi|* + E[| X;Y7]) + Ca* (BY?)?
< Co3(EIX; P +E|Y;3),

where the last inequality results from Lemma A.2 and the basic inequality ab® < a3 + b3 for
a,b> 0. In addition, as G; < 2r < 2 when z|X;| < 1, we obtain for z > 3

(B.8) 22 [E[Z;eC 1(2] X;] < 1,2]Y;| > 1)]]
< C’E[Y2L(2|Yi| > 1)] + CaE[Y2P(x]Yi| > 1)
< CEB[|Yil*1(|Yi| > 1)] < C6,.
Moreover, as z2EY;? < 1/16,
(B.9) 2| E[Ze% 1 (2| X, > 1))
< 2’E[YV2e% 1(z|X;| > 1)] + E[e¥ 1(z|X;| > 1)].
As for the second error term, we have
E[eC 1 (x| X;| > 1)]
=E[e%1(2|X;] >1,X; <0)]+E[e%1(x|X;] > 1,X; > 0)]
< PE[|IX31(x]| X > D] + E[e“ 1(xX; > 1)].
Observe that when z.X; > 1,
G — e Xi—wra®Y? o 2raXi o 20X,

and by Cauchy inequality for 0 < r < rg < w,

(B.10) 2rzX; —wra?Y? < 2wr) 2z X; — wra?y?
2 y2
X
< 7 2EY2
S 1172Yz'2 n CoszYf + wrcyxr f
Therefore
(B.11) E[e“ 1(z|X;| > 1)]

<X > 1)+ [ e N b ) > 1)
<R, ;.

As for the first error term in (B.9), it follows from the basic inequality |z|*e=%% < C(k,0)
for some constant C'(k, J) depending on & and ¢ that

2 E[Y2e% 1 (x| X;| > 1)]
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gC’lE[e2”X1’_(“’/2”“/2)”2)7]l(:z:|XZ-| >1)]
<C12Blz| X2 1 (2] X;| > 1)]

+ ClE[ez’"xXi_(“/2+T°/2)’"xzyi2]1(in >1)].

As 0 <7 <rog<w/2+ry/2, by asimilar procedure to (B.10) we obtain

(B.12) L?E[Y2e 1 (x| X;| > 1)] < C1 Ry

Consequently, it follows from the bounds (B.7)—(B.9) and (B.11)—(B.12) that

(B.13) [E[Z:e% ]| < C[x(B| X + |Vi]*) + 272 Ry ).

By similar arguments, we obtain
(B.14) E[Z?e%] < Cx 'R,
In addition,
n
(B.15) B[e?) = T (Bl 1l :] > 1) + B 1] X:] < 1,2]Yi| < 1)

i=1
FE[% (2] X;] < 1,2]Y;] > 1)]).
Note that
E[e“ 1(z|X;] < 1,2]Y;| > 1)] < 2B V|21 (2]V;] > 1)] < C6,
and (B.11) has shown
E[e“ 1 (x| X;| > 1)] < CR..,

moreover, by inequality |e* — (1 +s+52/2+5%/6)| < s*e*VV and G; < 2r¢ when 7| X;| < 1,
(B.16) E[eC 1(z|X;] < 1,2]Y;| <1)]

=E[(1+Gi+G;/2+G}/6+O0(G)) L(x|X;] < 12|V < 1)]

=14 (2r? —wr)2?EX? — 2wr?a’E[X; Y] + gr?’az?’EXf’ + O(03,4)-
Under condition (2.7), we have

5:1,‘,i < Rx,i < x3(E‘Xz’3 + E’EP) + Ta,i <ca+ 1/64

As aresult for small constant ¢,

1/2 <E[e%] < 3/2.
Thus it follows by substituting (B.13) and (B.14) into (B.6) that
B.17) E{(V;2~1)" =i G Y

<2 HE[eGi] (:17_4Rx + (xLspn + :17_2Rx)3>
i=1
4
< Az72R, exp {(27‘2 —wr)?EX? — 2wr? 2B X, Y7 + gr?’x?’EXf’ + A(SM},

hence the desired result (A.33) is derived. (A.31) is a special case of (A.33), with r = A\; and
w=1.
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Next we prove (A.32). We have by conditional Cauchy-Schwarz inequality that

(B.18) XH:E{‘Wi (Z§+2Z,~sz)‘e&z::1wi}
i=1 i#£]

+2§:E[
=1

<N E (Wizfeh T, Wi ZiW,i sz‘eh B W)
i=1

J#i
<Q1 + Q2,
where
" "\ E|W;z2eMWs
— )\1W1 19
Qu=]JEM" Y — s
i=1 i=1
n 9 1 1
Q=2 ZE <|Z¢Wi|e)‘lwi> {E K Z Zj> eM Dz WJ‘] } ? [I[EeA1 2t WJ‘] .
i=1 j#i
Recalling (A.8) and (A.17), we have
(B.19) TTEEM"] < exp{m(X) e

i=1

and when z satisfies (2.7) with small constant cq,
(B.20) 1/2 <E[eMW] < 3/2.
Further, through an analogous proof to (B.13), we obtain

2? B W; Z| e V]

< CE[(2®|1 X, Y7 + 2'Y + 23| X3 | EY? + 2*YPEY ) eM V]

< CE[(2®|1 X, Y7 + o'V + 2| X;| + 2°Y2)eM Vil (2 X; > 1)]

+ CE[(2®| XY + 23 Vi 4+ 2° | X [EY? + 2*Y2EY?)eM Vil (2X; < 1)]

10X

< CE[e s # X 50 o 1 (2 X, > 1)] + C23 (B X P + BV ),

where in the last inequality we used the fact that ab? < a3 + b for a > 0,b > 0 and
74(E[Y;?])? < 26, ; by Lemma A.2. By (B.10). we obtain for \; < 3/4,

10X

E[e’ 5 s X 5 2"Y2 (2] X;] > 1)] < CE [emi“{vffi?iwf’zxxi} 1(xX; > 1)] .
Hence
(B.21) E[[W;Zi|eMV] < 27 2R, + 2(E|X,[* + E|Y;[*).
Similarly, we can obtain
(B.22) E(|W;Z2eM™) < Cz Ry,
which together with (B.19) and (B.20) gives
Q1 <Cy exp{m(/\l)}x_‘leeQRZ.
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As for ()2, noting the bound (B.19)—(B.21) and (A.31), we have
Q2 < Ca™*Ry +aLay) (exp{mO) b2 Rpe M) (explm(A) Je ) 2
< C(x7%R, + Ly ) exp{m(A) )z RY/ Al
< Cexpm(A)z 2Rye M
Here we apply the fact :L'4L3,n <26, <2R, in Lemma A.2 to derive the last inequality. Thus

(A.32) is proved. The proof of Lemma A.4 is completed.

B.4. Proof of Lemma A.5. Assume A = 1 without loss of generality, as the proof for
general A > 0 is similar. By Cauchy-Schwarz inequality, it is obvious that S? < nV;? and

52
hence E[e 2 +07% | < co. We have

s2

(B.23) E[eWToB% (b]Sn| > 1)}

(" | S|
_/0 ’ P<7\/m>\/¥,b|5n|>l)dt

:/O”et {[[%ﬁ > V,b|Su| > 1)

Sp
+]P’(7 >V, b|S,| > 1)}
VVZ+ B2
The integral in 0 < ¢ < 1 is bounded by ebPE|S,, |’ and hence is dominated by the right hand
side of (A.57) by Rothenthal’s inequality. Thus it remains to consider the integral for ¢ > 1.
Let v = B2 where c is a large positive number. Denote X; = X;1(|X;| < v), then

\/7 b
(B.24) P(w/zsii > V2,b|S,| > 1)
Sy Vi
ZE:Z ],;X: 1 ‘;X: ’ > L’) ‘//E
+IP>( N > 5 blS) >1>

5, Vi " t
SP(\@B R b\S\>1)+P<;1(]Xi\>u)>z,bysny>1>

C1/4

<Bes E[ys P exp {cp * t;—’;}}—i—bi”e_%E[\Sn\peSZ?11(|X1‘|>”)}

1/4

=bPe Ei+ Ve 2tE2,

where the second inequality is obtained by Cauchy inequality. Now we turn to estimating £
and Ey. Let A, , = W max{B,, (327, E|X;|?)'/P}. Denote X; = X;1(|X;| < A ),

Sp=>_1— Xi and s =5, - X, Observing that

(B.25) L(|Sp| > 2) S 1(|Sn] > 2) + Y 1(|Sn| > 2, Xi] > Ap p)

i=1
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_ - 1
L1(|Sn| > z) + g ]l(|XZ-|>§3:)
i=1

+3°1(89] > 50,11 > Anp),

we have
(B26) B — / paP B[S T X201 (18, | > 2)]da
0
S/ paP R[S X HIXi>1 (15| > 2)]da
0
n o0 N 1
230 [T e BT N1 > ol
i=170 2
n o0 N ) 1
3 [T B IS0 > X > 4,
n o0 1
<Qi+ ZeSE(eSZml(XjP”))/ prPP(1X;| > —x)dx
i=1 0 2
0 ) 1
+ Ze ) PE|X; |p/ paP R [e8 2 LI P 1 (80 > Z g da
0 2
t n
<Q +e82pexp{z}§ElXilp+eg2pA i ZEIX P)E
<@+ 682pexp{£} zn:E]X-\p + 1Eg
—= 4 — 7 4 bl
where

[e.e]

Q1= / PP E[STim WX 1 (18, > o)) da.
0

The second to last inequality is based on the fact that |z 4+ u|P is a convex function with

respect to = and that there exists some large constant c such that for v = C\% ,

B Zin M%) < [ 1+ SP(X;| > )
<exp{}iL, P Xi| > v)}
eS 5 t
<exp{5B,} < exp{7}.
As for ()1, it holds that

(B.27) T AwHE XD+ K gy

0

Furthermore, as | X;|/A, , < 1, we obtain from Taylor expansion that

(B.28) ﬁEeSM‘Xi'”)*A
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n X X2
H 1+e]l|X|>1/))< i 2A2>

SCexp{;PﬂXﬂ > 1)+ 7 BIX1(Xi] > )
A2 (x| > )}
SCexp{B;zL By ZE[XZ-IP—F 12 B,%}SAexp{f},
v Ay pv po 2435, 4
which yields
(B.29) Q1 <A(Ayp)P exp{i}/ooO paPte % dx

t [ »
<A exp{Z}(;E\Xﬂp +(ES)%).
Consequently, it follows from (B.26) and (B.29) that

t e o
(B.30) By < Ay exp{z}[;E|Xi|p+ (ESn)z].

Next we deal with F. Recalling that ]XZ\ <v=CB,/v, we have for large constant ¢

(B.31) Eexp{cgi\/f%} Sexp{Z{ \/_B E|X;|1(|1X;] > v)

1/4
i=1 ©o n

t
+ exp{ 1/4} EX?}}

cé/ZB?L
tB2 C t
Sexp{\l/_ + exp { 1/4} 1/2}
cj Bpv 2¢y
t
Sexp{z}.

Denote SA'S) = Sn — XZ- and
> p—1_—z/a -1 S
Qo= pxP~ e E[exp{co“\/——k }]da:
0 By n,p
By a similar procedure to (B.26)—(B.30), we have for large cg

Elz/ pl’p_lE[eXp{Cai\/E%}]lﬂSM>:E)]dl’

0

<Q9+Ch zn:E[exp (cai\/zi
=1

Bn)} EIXI

e S B s ess (Vi)
— n,p
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t o 1
<Q2+ 0 eXP{Z}ZE|Xi|p +15
i=1

Moreover, it follows from Taylor expansion that

to. tedlat Xi
<1+ 1;4/ X + 61/2 X§><1+e )
¢’ Bn 2¢,/ " B2 Anp

< Ce/4(Ap )P < Cetl [ZE\XZ-V’ + (ESR)Y/ 2} :
i=1

n

QZ S C(An,p)p H E

i=1

Consequently,
t n
Ey < Cexp{7) [Z;E|Xi|p + (Esg)p/z} 7
1=

which together with (B.30), (B.24) and (B.23) gives the result (A.57). The proof is completed.
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